2005, Número 2
<< Anterior Siguiente >>
Rev Invest Clin 2005; 57 (2)
Acción novedosa de la aldosterona en la nefrotoxicidad por ciclosporina
Pérez-Rojas JM, Bobadilla NA
Idioma: Español
Referencias bibliográficas: 62
Paginas: 147-155
Archivo PDF: 356.04 Kb.
RESUMEN
Los inhibidores de calcineurina son los agentes inmunosupresores más potentes con los que se cuenta en la práctica clínica, y gracias a su bajo costo respecto a las nuevas terapias inmunosupresoras, en nuestro país continúan siendo los agentes terapéuticos más utilizados para el manejo de pacientes con enfermedades autoinmunes o que reciben trasplantes. En la década de los 80’s se introdujo la ciclosporina A (CsA) como primer inhibidor de calcineurina, lo cual revolucionó la terapia inmunosupresora. Desde entonces se han publicado muy variados artículos donde se han evaluado los efectos benéficos y deletéreos de estos inhibidores; específicamente nos enfocaremos a revisar las acciones de CsA y, en particular, los resultados de nuestro laboratorio que muestran el papel fisiopatológico que juega la aldosterona como mediador de los cambios funcionales y estructurales que se observan en la nefrotoxicidad por ciclosporina. Específicamente su participación en promover la vasoconstricción renal asociada a CsA y en el desarrollo de fibrosis al inducir la expresión de TGFb. Por lo tanto, nuestros resultados y los de otros autores nos permiten proponer el bloqueo de los receptores de aldosterona con espironolactona o eplerone como un tratamiento farmacológico útil para reducir la incidencia de nefrotoxicidad aguda y crónica, inducida por CsA en pacientes con enfermedades autoinmunes o que reciben trasplante de órganos.
REFERENCIAS (EN ESTE ARTÍCULO)
De Mattos AM, Olyaei AJ, Bennett WM. Nephrotoxicity of immunosuppressive drugs: long-term consequences and challenges for the future. Am J Kidney Dis 2000; 35: 333-46.
Najarian JS, Frey DJ, Matas AJ, Gillingham KJ, So SS, Cook M, Chavers B, Mauer SM, Nevins TE. Renal transplantation in infants. Ann Surg 1990; 212: 353-65.
European Best Practice Guidelines for renal transplantation (part 1). Nephrol Dial Transplant 2000; 15 (Suppl. 7): 1-85.
Kopp JB, Klotman PE. Cellular and molecular mechanisms of cyclosporin nephrotoxicity J Am Soc Nephrol: 1990; 1: 162-79.
Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR. The natural history of chronic allograft nephropathy. N Engl J Med 2003; 349: 2326-33.
Li C, Yang CW, Kim WY, Jung JY, Cha JH, Kim YS, et al. Reversibility of chronic cyclosporine nephropathy in rats after withdrawal of cyclosporine. Am J Physiol Renal Physiol 2003; 284: F389-F398.
Mihatsch MJ, Ryffel B, Gudat F. The differential diagnosis between rejection and cyclosporine toxicity. Kidney Int 1995; 52 (Suppl): S63-S69.
Perico N, Benigni A, Bosco E, Rossini M, Orisio S, Ghilardi F, et al. Acute cyclosporine A nephrotoxicity in rats: which role for renin-angiotensin system and glomerular prostaglandins? Clin Nephrol 1986; 25 (Suppl 1): S83-S88.
Rosen S, Greenfeld Z, Brezis M. Chronic cyclosporine-induced nephropathy in the rat. A medullary ray and inner stripe injury. Transplant 1990; 49: 445-52.
Barros EJ, Boim MA, Ajzen H, Ramos OL, Schor N. Glomerular hemodynamics and hormonal participation on cyclosporine nephrotoxicity. Kidney Int 1987; 32: 19-25.
Bobadilla NA, Tapia E, Franco M, López P, Mendoza S, García-Torres R, et al. Role of nitric oxide in renal hemodynamic abnormalities of cyclosporin nephrotoxicity. Kidney Int 1994; 46: 773-9.
Thomson SC, Tucker BJ, Gabbai F, Blantz RC. Functional effects on glomerular hemodynamics of short-term chronic cyclosporine in male rats. J Clin Invest 1989; 83: 960-9.
Kon V, Sugiura M, Inagami T, Harvie BR, Ichikawa I, Hoover RL. Role of endothelin in cyclosporine-induced glomerular dysfunction. Kidney Int 1990; 37: 1487-91.
Perico N, Benigni A, Zoja C, Delaini F, Remuzzi G. Functional significance of exaggerated renal thromboxane A2 synthesis induced by cyclosporin A. Am J Renal Physiol 1986; 251: F581-F587.
Thomson AW, McAuley FT, Whiting PH, Simpson JG. Angiotensin-converting enzyme inhibition or aldosterone antagonism reduces cyclosporine nephrotoxicity in the rat. Transplant Proc 1987; 19: 1242-3.
Diederich D, Yang Z, Luscher TF. Chronic cyclosporine therapy impairs endothelium-dependent relaxation in the renal artery of the rat. J Am Soc Nephrol 1992; 2: 1291-7.
Vaziri ND, Ni Z, Zhang YP, Ruzics EP, Maleki P, Ding Y. Depressed renal and vascular nitric oxide synthase expression in cyclosporine-induced hypertension. Kidney Int 1998; 54: 482-91.
Bobadilla NA, Gamba G, Tapia E, García-Torres R, Bolio A, López-Zetina P, Herrera-Acosta J. Role of NO in cyclosporin nephrotoxicity: effects of chronic NO inhibition and NO synthases gene expression. Am J Renal Physiol 1998; 274: F791-F798.
López-Ongil S, Laura M, Rodríguez-Puyol D, Rodríguez-Puyol M, Lamas S. Regulation of endothelial NO synthase expression by cyclosporin A in bovine aortic endothelial cells. Am J Renal Physiol 1996; 271: H1072-H1078.
Tariq M, Morais C, Sobki S, Al Sulaiman M, Al Khader A. N-acetylcysteine attenuates cyclosporin-induced nephrotoxicity in rats. Nephrol Dial Transplant 1999; 14: 923-9.
Jenkins JK, Huang H, Ndebele K, Salahudeen AK. Vitamin E inhibits renal mRNA expression of COX II, HO I, TGFbeta, and osteopontin in the rat model of cyclosporine nephrotoxicity. Transplant 2001; 71: 331-4.
Barany P, Stenvinkel P, Ottosson-Seeberger A, Alvestrand A, Morrow J, Roberts JJ, et al. Effect of 6 weeks of vitamin E administration on renal haemodynamic alterations following a single dose of neoral in healthy volunteers. Nephrol Dial Transplant 2001; 16: 580-4.
Duruibe VA, Okonmah A, Panton L, Blyden GT. Effect of cyclosporin A on rat kidney catecholamines. Life Sci 1990; 47: 255-61.
Zhong Z, Connor HD, Yin M, Moss N, Mason RP, Bunzendahl H, et al. Dietary glycine and renal denervation prevents cyclosporin A-induced hydroxyl radical production in rat kidney. Mol Pharmacol 1999; 56: 455-63.
Elzinga LW, Rosen S, Burdmann EA, Hatton DC, Lindsley J, Bennett WM. The role of renal sympathetic nerves in experimental chronic cyclosporine nephropathy. Transplant 2000; 69: 2149-53.
Pichler RH, Franceschini N, Young BA, Hugo C, Andoh TF, Burdmann EA, et al. Pathogenesis of cyclosporine nephropathy: roles of angiotensin II and osteopontin. J Am Soc Nephrol 1995; 6: 1186-96.
Shihab FS, Bennett WM, Tanner AM, Andoh TF. Angiotensin II blockade decreases TGF-beta1 and matrix proteins in cyclosporine nephropathy. Kidney Int 1997; 52: 660-73.
Zhong Z, Arteel GE, Connor HD, Yin M, Frankenberg MV, Stachlewitz RF, et al. Cyclosporin A increases hypoxia and free radical production in rat kidneys: prevention by dietary glycine. Am J Renal Physiol 1998; 275: F595-F604.
Thomas SE, Andoh TF, Pichler RH, Shankland SJ, Couser WG, Bennett WM, et al. Accelerated apoptosis characterizes cyclosporine-associated interstitial fibrosis. Kidney Int 1998; 53: 897-908.
Amore A, Emancipator SN, Cirina P, Conti G, Ricotti E, Bagheri N, Coppo R. Nitric oxide mediates cyclosporine-induced apoptosis in cultured renal cells. Kidney Int 2000; 57: 1549-59.
Feria I, Pichardo I, Juárez P, Ramírez V, González MA, Uribe N, et al. Therapeutic benefit of spironolactone in experimental chronic cyclosporine A nephrotoxicity. Kidney Int 2003; 63: 43-52.
Vieira JM, Jr., Noronha IL, Malheiros DM, Burdmann EA. Cyclosporine-induced interstitial fibrosis and arteriolar TGF-beta expression with preserved renal blood flow. Transplant 1999; 68: 1746-53.
Ling H, Li X, Jha S, Wang W, Karetskaya L, Pratt B, et al. Therapeutic role of TGF-beta-Neutralizing antibody in mouse cyclosporin A nephropathy: morphologic improvement associated with functional preservation. J Am Soc Nephrol 2003; 14: 377-88.
Shihab FS, Yi H, Bennett WM, Andoh TF. Effect of nitric oxide modulation on TGF-beta1 and matrix proteins in chronic cyclosporine nephrotoxicity. Kidney Int 2000; 58: 1174-85.
Perico N, Dadan J, Remuzzi G. Endothelin mediates the renal vasoconstriction induced by cyclosporine in the rat. J Am Soc Nephrol 1990; 1: 76-83.
Fogo A, Hellings SE, Inagami T, Kon V. Endothelin receptor antagonism is protective in vivo acute cyclosporine toxicity. Kidney Int 1992; 42: 770-4.
Hunley TE, Fogo A, Iwasaki S, Kon V. Endothelin A receptor mediates functional but not structural damage in chronic cyclosporine nephrotoxicity. J Am Soc Nephrol 1995; 5: 1718-23.
Torras J, Valles J, Sánchez J, Sabate I, Serón D, Carrera M, et al. Prevention of experimental cyclosporine nephrotoxicity by dietary supplementation with LSL 90202, a lysine salt of eicosapentaenoic acid. Role of thromboxane and prostacyclin in renal tissue. Nephron 1994; 67: 66-72.
Bobadilla NA, Tapia E, Jiménez F, Sánchez-Lozada LG, Santamaría J, Monjardan A, et al. Dexamethasone increases eNOS gene expression and prevents renal vasoconstriction induced by cyclosporine. Am J Renal Physiol 1999; 277: F464-F471.
Sánchez-Lozada LG, Gamba G, Bolio A, Jiménez F, Herrera-Acosta J, Bobadilla NA. Nifedipine prevents changes in nitric oxide synthase mRNA levels induced by cyclosporine. Hyperterns 2000; 36: 642-7.
Andoh TF, Gardner MP, Bennett WM. Protective effects of dietary L-arginine supplementation on chronic cyclosporine nephrotoxicity. Transplant 1997; 64: 1236-40.
Yang CW, Kim YS, Kim J, Kim YO, Min SY, Choi EJ, et al. Oral supplementation of L-arginine prevents chronic cyclosporine nephrotoxicity in rats. Exp Nephrol 1998; 6: 50-6.
Kang DH, Kim YG, Andoh TF, Gordon KL, Suga SI, Mazzali M, et al. Post-cyclosporine-mediated hypertension and nephropathy: amelioration by vascular endothelial growth factor. Am J Physiol Renal Physiol 2001; 280: F727-F736.
Schwedler SB, Bobadilla N, Striker LJ, Vaamonde CA, Herrera-Acosta J, Striker GE. Pentosan polysulfate treatment reduces cyclosporine-induced nephropathy in salt-depleted rats. Transplant 1999; 68: 1583-8.
Asai T, Nakatani T, Yamanaka S, Tamada S, Kishimoto T, Tashiro K, et al. Magnesium supplementation prevents experimental chronic cyclosporine a nephrotoxicity via renin-angiotensin system independent mechanism. Transplant 2002; 74: 784-91.
Kim GH, Masilamani S, Turner R, Mitchell C, Wade JB, Knepper MA. The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. Proc Natl Acad Sci USA 1998; 95: 14552-7.
Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA. Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 1999; 104: R19-R23.
Seok JH, Hong JH, Jeon JR, Hur GM, Sung JY, Lee JH. Aldosterone directly induces Na, K-ATPase alpha 1-subunit mRNA in the renal cortex of rat. Biochem Mol Biol Int 1999; 47: 251-4.
Boron WF, Boulpaep EL. Medical Physiology. USA: Saunders; 2003, p. 1057-61.
Ngarmukos C, Grekin RJ. Non-traditional aspects of aldosterone physiology. Am J Physiol Endocrinol Metab 2001; 281: E1122-E1127.
Christ M, Wehling M. Rapid actions of aldosterone: lymphocytes, vascular smooth muscle and endothelial cells. Steroids 1999; 64: 35-41.
Verrey F. Early aldosterone action: toward filling the gap between transcription and transport. Am J Renal Physiol 1999; 277: F319-F327.
Rossi GP, Sacchetto A, Visentin P, Canali C, Graniero GR, Palatini P, et al. Changes in left ventricular anatomy and function in hypertension and primary aldosteronism. Hyperterns 1996; 27: 1039-45.
Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999; 341: 709-17.
Hostetter TH, Rosenberg ME, Kren S, Greene EL. Aldosterone induces glomerular sclerosis in the remnant kidney. J Am Soc Nephrol 1996; 6: 1016.
Juknevicius I, Segal Y, Kren S, Lee R, Hostetter TH. Effect of aldosterone on renal transforming growth factor-beta. Am J Renal Physiol 2004; 286: F1059-F1062.
Rocha R, Chander PN, Khanna K, Zuckerman A, Stier CT, Jr. Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hyperterns 1998; 31: 451-8.
Blasi ER, Rocha R, Rudolph AE, Blomme EA, Polly ML, McMahon EG. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int 2003; 63: 1791-800.
Schiffrin EL, Franks DJ, Gutkowska J. Effect of aldosterone on vascular angiotensin II receptors in the rat. Can J Physiol Pharmacol 1985; 63: 1522-7.
Schiffrin EL, Gutkowska J, Genest J. Effect of angiotensin II and deoxycorticosterone infusion on vascular angiotensin II receptors in rats. Am J Physiol 1984; 246: H608-H614.
Robert V, Heymes C, Silvestre JS, Sabri A, Swynghedauw B, Delcayre C. Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: role in aldosterone-salt-induced fibrosis. Hyperterns 1999; 33: 981-6.
Taddei S, Virdis A, Mattei P, Salvetti A. Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hyperterns 1993; 21: 929-33