2015, Número 5
<< Anterior Siguiente >>
Gac Med Mex 2015; 151 (5)
Alteraciones electroencefalográficas y del neurodesarrollo en cardiopatías congénitas severas. Estudio de seguimiento
Esquivel-Hernández FJ, Mendieta-Alcántara GG, Pliego-Rivero FB, Otero-Ojeda GA
Idioma: Español
Referencias bibliográficas: 47
Paginas: 588-598
Archivo PDF: 177.81 Kb.
RESUMEN
Las cardiopatías se encuentran entre las malformaciones congénitas más frecuentes al nacimiento. Debido a que las ventanas de oportunidad o hitos en el desarrollo temprano en los que la intervención puede lograr mejores resultados se cierran rápidamente, el objetivo de este trabajo fue determinar mediante electroencefalografía tradicional (EEG) y cuantitativa (EEGq) el impacto a corto y mediano plazo de las cardiopatías congénitas severas (CCS) sobre la integridad y el desarrollo del
SNC. Se realizó EEG y EEGq y valoración del neurodesarrollo a 21 pacientes (8-27 meses, ˙x = 14.8) con CCS estudiados previamente y a 19 niños sanos (grupo C, 8-29 meses, ˙x = 14.6). Al compararse los resultados entre grupos y con aquellos obtenidos en el estudio anterior se observaron diferencias significativas en la banda theta (CCS › C) en derivaciones frontales, centrales y temporales (p ‹ 0.05). El EEG y el EEGq en el grupo CCS se mantuvieron anormales en la segunda
evaluación. En cuanto al neurodesarrollo, en 86% de los casos CCS el diagnóstico fue nuevamente de anormal, siendo el hipotono leve y moderado la alteración más frecuente. Las CCS tienen una repercusión importante sobre la función del SNC, esto se evidencia por alteraciones en el neurodesarrollo y de la actividad eléctrica cerebral, observadas en el rango de edades estudiadas.
REFERENCIAS (EN ESTE ARTÍCULO)
Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890-1900.
Bermúdez-Alarcón J, Villalón-Calderón VH, Ixcamparij-Rosales C, et al. Incidencia de las cardiopatías congénitas en el Centro Médico Nacional 20 de Noviembre. Revista de Especialidades Médico-Quirúrgicas. 2002; 7:41-5.
Mendieta-Alcántara GG, Santiago-Alcántara E, Mendieta-Zerón H, et al. Incidencia de las cardiopatías congénitas y los factores asociados a la letalidad en niños nacidos en dos hospitales del Estado de México. Gac Med Mex. 2013;149:617-23.
Palencia R. Complicaciones neurológicas del paciente con cardiopatía. Rev Neurol. 2002;35:279-85.
Licht D, Shera DM, Clancy RR, et al. Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg. 2009;137:529-36.
Manzar S, Nair AK, Pai MG, et al. Head size at birth in neonates with transposition of great arteries and hypoplastic left heart syndrome. Saudi Med J. 2005;26:453-6.
von Rhein M, Buchmann A, Hagmann C, et al. Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease. Brain. 2014;137(Pt 1):268-76.
Beca J, Gunn JK, Coleman L, et al. New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest. Circulation. 2013;127:971-9.
Hövels-Gürich HH, Konrad K, Skorzenski D, et al. Attentional dysfunction in children after corrective cardiac surgery in infancy. Ann Thorac Surg. 2007;83:1425-30.
Galli K, Kimmerman RA, Jarvik GP, et al. Periventricular leukomalacia is common after neonatal cardiac surgery. J Thorac Cardiovasc Surg. 2004;127:692-704.
Miller S, McQuillen PS, Hamrick S, et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med. 2007;357: 1928-38.
Beca J, Gunn J, Coleman L, et al. Pre-operative brain injury in newborn infants with transposition of the great arteries occurs at rates similar to other complex congenital heart disease and is not related to balloon atrial septosomy. J Am Coll Cardiol. 2009;553:1807-11.
Block A, McQuillen PS, Chau V, et al. Clinically silent preoperative brain injuries do not worsen with surgery in neonates with congenital heart disease. J Thorac Cardiovasc Surg. 2010;140:550-7.
Andropoulos D, Hunter JV, Nelson DP, et al. Brain immaturity is associated with brain injury before and after neonatal cardiac surgery with high-flow bypass and cerebral oxygenation monitoring. J Thorac Cardiovasc Surg. 2010;139:543-56.
Limperopoulos C, Majnemer A, Shevell MI, et al. Neurodevelopmental status of newborns and infants with congenital heart defects before and after open heart surgery. J Pediatr. 2000;137:638-45.
Majnemer A, Limperopoulos C, Shevell MI, et al. A new look at outcomes of infants with congenital heart disease. Pediatr Neurol. 2009;40: 197-204.
Owen M, Shevell M, Majnemer A, et al. Abnormal brain structure and function in newborns with complex congenital heart defects before open heart surgery: a review of the evidence. J Child Neurol. 2011;26: 743-55.
Jordan KG. Continuous EEG and evoked potential monitoring in the neuroscience intensive care unit. [Review]. J Clin Neurophysiol. 1993;10:445-75.
Branthwaite MA. Detection of neurological damage during open-heart surgery. Thorax. 1973;28:464-72.
Kritikou PE, Branthewaite MA. Significance of changes in electrical activity at onset of cardiopulmonary bypass. Thorax. 1977;32:534-8.
Mendieta GG, Otero GA, Motolinía R, et al. Estudio electroencefalográfico en niños con cardiopatías congénitas severas. Rev Ecuat Neurol. 2011;20:60-7.
Hansotia PL, Myers WO, Ray JF, et al. Prognostic value of electroencephalography in cardiac surgery. Ann Thorac Surg. 1975;19:127-34.
Sotaniemi KA. Five-year neurological and EEG outcome after open-heart surgery. J Neurol Neurosurg Psychiatry. 1985;48:569-75.
Limperopoulos C, Majnemer A, Rosenblatt B, et al. Association between electroencephalographic findings and neurologic status in infants with congenital heart defects. J Child Neurol. 2001;16:471-6.
Olson DM, Davis AS. The use of EEG in assessing acute and chronic brain damage in the newborn. En Benitz WE, Stevenson DK & Sunshine P, editors. Fetal and Neonatal Brain Injury. UK: Cambridge University Press; 2003. pp. 196-208.
Ricardo J, Fernández-Bouzas A, Harmony T, et al. Importancia de la sustracción de un factor de escala global de las potencias absolutas del electroencefalograma para la ubicación precisa de la actividad electroencefalográfica anormal. Salud Ment. 2002;25:25-34.
Santiago-Rodríguez E, Harmony T, Cárdenas-Morales L, et al. Analysis of background EEG activity in patients with juvenile myoclonic epilepsy. Seizure. 2008;17:437-45.
Aguilar L, Rodríguez RF, Marrero P, et al. Análisis espectral del electroencefalograma en pacientes con epilepsia rolándica. Rev Hab Cien Méd. 2012;11:45-50.
Sananes R, Manlhiot C, Kelly E, et al. Neurodevelopmental outcomes after open heart operations before 3 months of age. Ann Thorac Surg. 2012;93:1577-83.
Simons JS, Glidden R, Sheslow D, et al. Intermediate neurodevelopmental outcome after repair of Ventricular Septal Defect. Ann Thorac Surg. 2010;90:1586-92.
Miatton M, De Wolf DD, François K, et al. Intellectual, neuropsychological, and behavioral functioning in children with Tetralogy of Fallot. J. Thorac Cardiovasc Surg. 2007;133:449-55.
Majnemer A, Limperopoulos C, Shevell MI, et al. Developmental and functional outcomes at school entry in children with Congenital Heart Defects. J Pediatr. 2008;153:55-60.
Donofrio MT, Massaro AN. Impact of congenital heart disease on brain development and neurodevelopmental outcome. Int J Pediatr. 2010;doi: 10.1155/2010/359390. [consultado julio 2014].
Esquivel HernándezFJ, Pliego Rivero FB, Mendieta Alcántara GG, et al. Alteraciones electroencefalográficas y del neurodesarrollo en niños portadores de cardiopatías congénitas severas. Estudio preliminar. Gac Med Mex. 2013;149:605-12.
Alvarado RG, Sánchez PC, Mandujano VM. EVANENE Evaluación del Neurodesarrollo del Neonato. Manual 32 CBS. México, UAM Xochimilco; 2010.
Marino BS, Lipkin PH, Newburger JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation. 2012; 126:1143-72.
Khalil A, Suff N, Thilaganathan B, et al. Brain abnormalities and neurodevelopmental delay in congenital heart disease: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2014;43:14-24.
Gunn JK, Beca J, Hunt RW, et al. Perioperative amplitude-integrated EEG and neurodevelopment in infants with congenital heart disease. Intensive Care Med. 2012;38:1539-4.
McQuillena PS, Goffb DA, Licht DJ. Effects of congenital heart disease on brain development. Prog Pediatr Cardiol. 2010;29:79-85.
Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis. Cell. 2006;126:1037-48.
Francis F, Meyer G, Fallet-Bianco C, et al. Human disorders of cortical development: from past to present. Eur J Neurosci. 2006;23: 877-93.
Hoch RV, Rubenstein JL, Pleasure S. Genes and signaling events that establish regional patterning of the mammalian forebrain. Semin Cell Dev Biol. 2009;20:378-86.
Rappaport LA, Wypij D, Bellinger DC, et al. Relation of seizures after cardiac surgery in early infancy to neurodevelopmental outcome. Circulation. 1998;97:773-9.
Miatton M, De Wolf D, François K, et al. Neurocognitive consequences of surgically corrected congenital heart defects: A review. Neuropsychol Rev. 2006;16:65-85.
Wernovsky G. Current insights regarding neurological and developmental abnormalities in children and young adults with complex congenital cardiac disease. Cardiol Young. 2006;16 (Suppl 1):92-104.
Porcayo-Mercado MR, Otero-Ojeda GA, Pliego-Rivero FB, et al. Neurobehavioral assessment of children presenting diverse congenital cardiopathologies. J Clin Psychol Med Settings. 2013;20:71-8.
Belliger DC, Wypij D, duDuplessis AJ. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg. 2003;126: 1385-96.