2010, Número 1-2
Siguiente >>
Rev Esp Cienc Salud 2010; 13 (1-2)
Las nodrizas de los linfocitos T
Reyes-García MG, Robles-Martínez S, García TF
Idioma: Español
Referencias bibliográficas: 29
Paginas: 5-9
Archivo PDF: 54.99 Kb.
RESUMEN
El timo es un órgano esencial del sistema inmune que recibe los linfocitos T inmaduros que proceden de la médula ósea y
se ocupa de eliminar aquellos defectuosos y auto-reactivos, al mismo tiempo que estimula la maduración de los restantes,
principalmente los linfocitos T colaboradores y reguladores. Las células nodrizas del timo son células epiteliales que
endocitan los linfocitos T inmaduros mediante la invaginación de la membrana y los conservan en vacuolas que expresan
tanto caveolinas como moléculas Clase II del MHC. Es probable que las selecciones positiva y negativa de los linfocitos T
inmaduros dependan del reconocimiento de esos antígenos, unidos o no a péptidos propios. El proceso de la maduración
y selección de los linfocitos T dentro del timo se encuentra modulado por los sistemas nerviosos central y vegetativo. Algunas
enfermedades por hipersensibilidad mediadas por linfocitos T pueden tener su origen en un desbalance de esa modulación
y/o un trabajo deficiente de sus células nodrizas.
REFERENCIAS (EN ESTE ARTÍCULO)
Lu LF, Rudensky A. Molecular orchestration of differentiation and function of regulatory T cells. Genes Dev 2009, 23: 1270-82.
Bird L. Open sesame! Thymic entry commands revealed. Nature Review Immunol 2009, 9: 305.
Bodey B, Bodey B Jr., Siegel SE, Kaiser HE. Involution of the mammaliam thymus, one of the leading regulators of aging. In vivo 1997, 11: 421-40.
Greenberg LJ, Yunis EJ. Immunological control of aging: a posible primary event. Gerontologia 1972, 18: 247-66.
Hansenne I. Thymic transcription of neurohypophysial and insulinrelated genes : impact upon T-cell differentiation and self-tolerance. J Neuroendocrinology 2005, 17: 321-7.
Jutel M, Akdis CA. T-cell regulatory mechanisms in specific immunotherapy. Chem Immunol Allergy 2008, 94: 158-77.
Guidos C. Thymus and T-lymphocyte development: what is new in the 21st century? Immunological Reviews 2006, 209: 5-9.
Boonmars T, Wu Z, Nagano I, Nakada T, Takahashi Y. Differences and similarities of nurse cells in cysts of Trichinella spiralis and T pseudospiralis. J Helminthol 2004, 78: 7-16.
Palis J. Developmental biology: no red cells is an island. Nature 2004, 432: 964-5.
Ochi T, Yoshikawa H, Toyosaki-Maeda T, Lipsky PE. Mesenchymal stromal cells. Nurse-like cells reside in the sinovial tissue and bone marrow in rheumatoid arthritis. Arthr Res Ther 2007, 9: 201-6.
Cordes U, Pedersen M, Bastholm L, Nielsen M, Werdelin O. Murine thymic nirse cells express ICAM-1 on caveolar and vacuolar membranes. Scand J Immunol 1997, 46: 344-8.
Hansenne I, Louis C, Martens H, Dorban G, Charlet-Renard C, Peterson P, Geenen V.Aire and Foxp3 expression in a particular microenvironment for T cell differentiation. Neuroimmunomodulation 2009, 16: 35-44.
Boyd RL, Oberhyber G, Hala K, Wick G. Obese strain (OS) chickens with spontaneous autoimmune thyroiditis have a deficiency in thymic nurse cells. J Immunol 1984, 132: 718-24.
Wekerle H, Ketelsen UP, Ernst M. Thymic nurse cells. J Exp Med 1980, 151: 925-44.
Lahoud M, Vremer D, Boyd RL, Shortman K. Characterization of thymic nurse-cell lymphocytes, using an improved procedure for nurse-cell isolation. Developm Immunol 1993, 3: 103-12.
Oliveira-dos-Santos AJ, Rieker-Geley T, Recheis H, Wick G. Murine thymic nurse cells and rosettes : analysis of adhesión molecule expression using confocal microscopy and a simplified enrichment method. J Histochem Cytochem 1997, 45: 1293-7.
Pezzano M, Samms M, Martínez M, Guyden J. Questionable thymic nurse cell. Microbiol Mol Biol Rev 2001, 65: 390-403.
Vliet E, Melis M, van Ewijk W. Immunohistology of the thymic nurse cells. Cell Immunol 1984, 87: 101-9.
Martinez M, Samms M, Hendrix TM, Adeosun O, Pezzano M, Guyden JC. Thymic nurse cell multicelular complexes in HY-TCR transgenic mice demonstrate their association with MHC restriction. Exp Biol Med 2007, 232: 780-8.
Pezzano M, Li Y, Philp D, Omene C, Cantey M, Saunders G, Guyden JC. Thymic nurse cell rescue of early CD4+ CD8+ thymocytes from apoptosis. Cell Mol Biol (Noisy-le-grand) 1995, 41: 1099-111.
Pezzano M, Philp D, Stephenson S, Li Y, Reid V, Maitta R, Guyden JC. Positive selection by thymic nurse cells requires IL-1b and is associated with an increased Bcl-2 expression. Cell Immunol 1996, 169: 174-84.
Rieker T, Penninger J, Romani N, Wick G. Chicken thymic nurse cells: an overview. Developm Comparat Immunol 1995, 19: 281-9.
Webb O, Kelly F, Benitez J, Li J, Parker M, Martínez M, Samms M, Blake A, Pezzano M, Guyden JC. The identification of thymic nurse cells in vivo and the role of cytoskeletal proteins in thymocyte internalization. Cell Immunol 2004, 228: 119-29.
Wakimoto T, Tomisaka R, Nishikawa Y, Sato H, Yoshino T, Takahashi K. Identification and characterization of human thymic cortical dendritic macrophages that may act as professional scavengers of apoptotic thymocytes. Immunobiology 2008, 213: 837-47.
Steinman L. Elaborate interactions between immune and nervous systems. Nature immunol 2004, 5: 575-81.
Mignini F, Tomassoni D, Traini E, Amenta F. Dopamine, vesicular transporters and dopamine receptor expression and localization in rat thymus and spleen. J Neuroimmunol 2009, 206: 5-13.
Leposavic G, Pilipoviv I, Radojevic K, Pesic V, Perisic M, Kosec D. Catecholamines as immunomodulators: a role for adrenoreceptormediated mechanisms in fine tuning of T-cell development. Autonomic neurosci, basic & clin 2008, 144: 1-12.
Levite M. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr Opin Pharmacol 2008, 8: 460-71.
Tan YV. Abad C, Lopez R, Dong H, Liu S, Lee A, Gomariz RP, Leceta J, Waschek JA. Pituitary adenylyl cyclase-activating polypeptide is an intrinsic regulator of Treg abundance and protects against experimental autoimmune encephalomyelitis. Proc Soc Natl Acad Sci 2009, 106: 2012-7.