2015, Número 1
<< Anterior Siguiente >>
Rev Med UV 2015; 15 (1)
Células Madre Hematopoyéticas: origen, diferenciación y función
Domínguez PM, Romero-Ramirez H, Rodríguez AJC
Idioma: Español
Referencias bibliográficas: 78
Paginas: 29-37
Archivo PDF: 378.79 Kb.
RESUMEN
El tejido hematopoyético proviene del mesodermo y está conformado por células que se encargan del buen funcionamiento del organismo
a través de la oxigenación, eliminación de desechos biológicos, transporte de células y componentes del sistema inmunológico. La
sobrevivencia en este tejido depende de cada población y varía desde 100-120 días en el eritrocito, hasta probablemente toda la vida
en una célula de memoria del sistema inmune. Ante la muerte celular, se requiere una producción periódica de células de los diversos
linajes hematopoyéticos, tal pérdida es compensada por células inmaduras conocidas como Células Madre Hematopoyéticas (CMH)
encargadas del proceso de hematopoyesis. Esta población se activa en el inicio de la vida fetal y genera cerca de 2 x 10
11 eritrocitos
y 10
10 células blancas cada día, Poseen capacidades de auto-renovación y diferenciación a múltiples linajes, aunque esta capacidad
disminuye hacia las etapas maduras del organismo. Las CMH se producen en distintos nichos, poseen proteínas membranales y expresan
factores de trascripción que permiten identificarlas. En conjunto, la expresión o activación de estos factores y proteínas específicas
para la diferenciación de cada linaje nos permiten entender los procesos celulares que rigen los mecanismos de auto-renovación,
diferenciación y proliferación de las CMH. Esta revisión agrupa el conocimiento actual del origen, funcionamiento y factores que
regulan el desarrollo y diferenciación de las células madre hematopoyéticas, pretende proporcionar una perspectiva que incluya las
interacciones celulares durante su desarrollo, programación de linajes y reprogramación por factores de transcripción y las diferencias
de cada etapa de la hematopoyesis.
REFERENCIAS (EN ESTE ARTÍCULO)
Bellantuono I. Haemopoietic stem cells. The international journal of biochemistry & cell biology. 2004;36(4):607-20.
Horwitz EM. Stem cell plasticity: the growing potential of cellular therapy. Archives of medical research. 2003;34(6):600-6.
Marone M, De Ritis D, Bonanno G, Mozzetti S, Rutella S, Scambia G, et al. Cell cycle regulation in human hematopoietic stem cells: from isolation to activation. Leukemia & lymphoma. 2002;43(3):493-501.
Niesler CU. Old dogmas and new hearts: a role for adult stem cells in cardiac repair? Cardiovascular journal of South Africa : official journal for Southern Africa Cardiac Society [and] South African Society of Cardiac Practitioners. 2004;15(4):184-9; discussion 9.
Hoffman R BE, Shattil SJ, Furie B, Cohen HJ, Silberstein LE. . Stem cell model of hematopoiesis. En: Hematology: Basic principles and practice. Philadelphia, EE.UU.: Churchill Livingstone2000. 126-38 p.
Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science. 2002;298(5593):601-4.
Mayani H, Alvarado-Moreno JA, Flores-Guzman P. Biology of human hematopoietic stem and progenitor cells present in circulation. Archives of medical research. 2003;34(6):476-88.
Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100(1):157-68.
Morrison SJ, Wandycz AM, Hemmati HD, Wright DE, Weissman IL. Identification of a lineage of multipotent hematopoietic progenitors. Development. 1997;124(10):1929-39.
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-11.
Mikkola HK, Orkin SH. The journey of developing hematopoietic stem cells. Development. 2006;133(19):3733-44.
Panoskaltsis N, Mantalaris A, Wu JH. Engineering a mimicry of bone marrow tissue ex vivo. Journal of bioscience and bioengineering. 2005;100(1):28-35.
Quesenberry PJ, Crittenden RB, Lowry P, Kittler EW, Rao S, Peters S, et al. In vitro and in vivo studies of stromal niches. Blood cells. 1994;20(1):97-104.
Hoffman R BE, Shattil SJ, Furie B, Cohen HJ, Silberstein LE, McGlave P. Anatomy and physiology of hematopoiesis, En Hematology: Basic principles and practice. Churchill Livingstone. Philadelphia, EE.UU.2000. 139-54. p.
Hoffman R. Benz EJ SS, Furie B, Cohen HJ, Silberstein LE, McGlave P. . Chronic Myelogenous Leukemia. En: Hematology: Basic principles and practice. Philadelphia, EE.UU.: Churchill Livingstone2000. 1155- 71 p.
Suda T, Arai F, Hirao A. Hematopoietic stem cells and their niche. Trends in immunology. 2005;26(8):426-33.
Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiation research. 1961;14:213-22.
Szilvassy SJ. The biology of hematopoietic stem cells. Archives of medical research. 2003;34(6):446-60.
Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro. Journal of cellular physiology. 1977;91(3):335-44.
Coulombel L, Eaves AC, Eaves CJ. Enzymatic treatment of longterm human marrow cultures reveals the preferential location of primitive hemopoietic progenitors in the adherent layer. Blood. 1983;62(2):291-7.
Benboubker L, Binet C, Cartron G, Bernard MC, Clement N, Delain M, et al. Frequency and differentiation capacity of circulating LTC-IC mobilized by G-CSF or GM-CSF following chemotherapy: a comparison with steady-state bone marrow and peripheral blood. Experimental hematology. 2002;30(1):74-81.
Wognum AW, Eaves AC, Thomas TE. Identification and isolation of hematopoietic stem cells. Archives of medical research. 2003;34(6):461-75.
Lanza F, Healy L, Sutherland DR. Structural and functional features of the CD34 antigen: an update. Journal of biological regulators and homeostatic agents. 2001;15(1):1-13.
Sutherland DR, Keating A. The CD34 antigen: structure, biology, and potential clinical applications. Journal of hematotherapy. 1992;1(2):115-29. Epub 1992/01/01.
Young PE, Baumhueter S, Lasky LA. The sialomucin CD34 is expressed on hematopoietic cells and blood vessels during murine development. Blood. 1995;85(1):96-105.
Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T, et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nature medicine. 1996;2(12):1329-37.
Civin CI, Trischmann T, Kadan NS, Davis J, Noga S, Cohen K, et al. Highly purified CD34-positive cells reconstitute hematopoiesis. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1996;14(8):2224-33.
Vogel W, Scheding S, Kanz L, Brugger W. Clinical applications of CD34 (+) peripheral blood progenitor cells (PBPC). Stem Cells. 2000;18(2):87-92.
Verstegen MM, van Hennik PB, Terpstra W, van den Bos C, Wielenga JJ, van Rooijen N, et al. Transplantation of human umbilical cord blood cells in macrophage-depleted SCID mice: evidence for accessory cell involvement in expansion of immature CD34+CD38- cells. Blood. 1998;91(6):1966-76.
Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nature medicine. 1998;4(9):1038-45.
Zanjani ED, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M. Human bone marrow CD34- cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Experimental hematology. 1998;26(4):353-60.
Nakamura Y, Ando K, Chargui J, Kawada H, Sato T, Tsuji T, et al. Ex vivo generation of CD34(+) cells from CD34(-) hematopoietic cells. Blood. 1999;94(12):4053-9.
Zanjani ED, Almeida-Porada G, Livingston AG, Zeng H, Ogawa M. Reversible expression of CD34 by adult human bone marrow longterm engrafting hematopoietic stem cells. Experimental hematology. 2003;31(5):406-12.
Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M. Isolation and characterization of human CD34(-)Lin(-) and CD34(+) Lin(-) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood. 2000;95(9):2813-20.
Wang J, Kimura T, Asada R, Harada S, Yokota S, Kawamoto Y, et al. SCIDrepopulating cell activity of human cord blood-derived CD34- cells assured by intra-bone marrow injection. Blood. 2003;101(8):2924- 31.
Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002-12.
Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood. 1997;90(12):5013- 21.
Pasino M, Lanza T, Marotta F, Scarso L, De Biasio P, Amato S, et al. Flow cytometric and functional characterization of AC133+ cells from human umbilical cord blood. British journal of haematology. 2000;108(4):793-800.
Matsumoto K, Yasui K, Yamashita N, Horie Y, Yamada T, Tani Y, et al. In vitro proliferation potential of AC133 positive cells in peripheral blood. Stem Cells. 2000;18(3):196-203.
Hess DA, Levac KD, Karanu FN, Rosu-Myles M, White MJ, Gallacher L, et al. Functional analysis of human hematopoietic repopulating cells mobilized with granulocyte colony-stimulating factor alone versus granulocyte colony-stimulating factor in combination with stem cell factor. Blood. 2002;100(3):869-78.
Bhatia M. AC133 expression in human stem cells. Leukemia. 2001;15(11):1685-8.
Hoffman R BE, Shattil SJ, Furie B, Cohen HJ, Silberstein LE, McGlave P. G, Livingstone C. Growth factors, Cytokines, and the Control of Hematopoiesis. En: Hematology: Basic principles and practice Philadelphia, EE.UU.2000. 139-54 p.
Conze T, Lammers R, Kuci S, Scherl-Mostageer M, Schweifer N, Kanz L, et al. CDCP1 is a novel marker for hematopoietic stem cells. Annals of the New York Academy of Sciences. 2003;996:222-6.
Bell DR, Van Zant G. Stem cells, aging, and cancer: inevitabilities and outcomes. Oncogene. 2004;23(43):7290-6.
Attar EC, Scadden DT. Regulation of hematopoietic stem cell growth. Leukemia. 2004;18(11):1760-8.
Ezoe S, Matsumura I, Satoh Y, Tanaka H, Kanakura Y. Cell cycle regulation in hematopoietic stem/progenitor cells. Cell Cycle. 2004;3(3):314-8.
Orkin SH. Diversification of haematopoietic stem cells to specific lineages. Nature reviews Genetics. 2000;1(1):57-64.
Kim SI, Bresnick EH. Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene. 2007;26(47):6777- 94.
Sasaki K, Yagi H, Bronson RT, Tominaga K, Matsunashi T, Deguchi K, et al. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(22):12359-63.
Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature. 2009;457(7231):887-91.
Huang G, Zhao X, Wang L, Elf S, Xu H, Sashida G, et al. The ability of MLL to bind RUNX1 and methylate H3K4 at PU.1 regulatory regions is impaired by MDS/AML-associated RUNX1/AML1 mutations. Blood. 2011;118(25):6544-52.
Minegishi N, Ohta J, Yamagiwa H, Suzuki N, Kawauchi S, Zhou Y, et al. The mouse GATA-2 gene is expressed in the para-aortic splanchnopleura and aorta-gonads and mesonephros region. Blood. 1999;93(12):4196-207.
Minegishi N, Suzuki N, Yokomizo T, Pan X, Fujimoto T, Takahashi S, et al. Expression and domain-specific function of GATA-2 during differentiation of the hematopoietic precursor cells in midgestation mouse embryos. Blood. 2003;102(3):896-905.
Wilson NK, Foster SD, Wang X, Knezevic K, Schutte J, Kaimakis P, et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell stem cell. 2010;7(4):532-44.
Pajcini KV, Speck NA, Pear WS. Notch signaling in mammalian hematopoietic stem cells. Leukemia. 2011;25(10):1525-32.
Azcoitia V, Aracil M, Martinez AC, Torres M. The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Developmental biology. 2005;280(2):307-20.
Hisa T, Spence SE, Rachel RA, Fujita M, Nakamura T, Ward JM, et al. Hematopoietic, angiogenic and eye defects in Meis1 mutant animals. The EMBO journal. 2004;23(2):450-9.
Kim I, Saunders TL, Morrison SJ. Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell. 2007;130(3):470-83.
Mikkola HK, Klintman J, Yang H, Hock H, Schlaeger TM, Fujiwara Y, et al. Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature. 2003;421(6922):547-51.
Kulessa H, Frampton J, Graf T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes & development. 1995;9(10):1250-62.
Nerlov C, Graf T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes & development. 1998;12(15):2403-12.
Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH. A lineage-selective knockout establishes the critical role of transcription factor GATA- 1 in megakaryocyte growth and platelet development. The EMBO journal. 1997;16(13):3965-73.
Sieweke MH, Tekotte H, Frampton J, Graf T. MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation. Cell. 1996;85(1):49-60.
Friedman AD, Keefer JR, Kummalue T, Liu H, Wang QF, Cleaves R. Regulation of granulocyte and monocyte differentiation by CCAAT/ enhancer binding protein alpha. Blood cells, molecules & diseases. 2003;31(3):338-41.
Zhang P, Iwasaki-Arai J, Iwasaki H, Fenyus ML, Dayaram T, Owens BM, et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity. 2004;21(6):853-63.
Querfurth E, Schuster M, Kulessa H, Crispino JD, Döderlein G, Orkin SH, et al. Antagonism between C/EBPbeta and FOG in eosinophil lineage commitment of multipotent hematopoietic progenitors. Genes & development. 2000;14(19):2515-25.
Hock H, Hamblen MJ, Rooke HM, Traver D, Bronson RT, Cameron S, et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity. 2003;18(1):109-20.
Dahl R, Iyer SR, Owens KS, Cuylear DD, Simon MC. The transcriptional repressor GFI-1 antagonizes PU.1 activity through protein-protein interaction. The Journal of biological chemistry. 2007;282(9):6473- 83.
Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999;401(6753):556-62.
Rolink AG, Nutt SL, Melchers F, Busslinger M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature. 1999;401(6753):603-6.
Busslinger M, Nutt SL, Rolink AG. Lineage commitment in lymphopoiesis. Current opinion in immunology. 2000;12(2):151-8.
DeKoter RP, Singh H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science. 2000;288(5470):1439-41.
Rothenberg EV. Negotiation of the T lineage fate decision by transcription-factor interplay and microenvironmental signals. Immunity. 2007;26(6):690-702.
Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 1997;89(4):587-96.
Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100(6):655-69.
Merkenschlager M. Ikaros in immune receptor signaling, lymphocyte differentiation, and function. FEBS letters. 2010;584(24):4910-4.
Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M, et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity. 1996;5(6):537-49.
Rossant J. Stem cells: the magic brew. Nature. 2007;448(7151):260-2.