2001, Número 1
<< Anterior Siguiente >>
Rev Inst Nal Enf Resp Mex 2001; 14 (1)
Avances en el estudio de los mecanismos celulares de supresión de la respuesta inmunitaria en la tuberculosis
Jiménez MMC, Báez SR, Linares CM, Chávez SR, Lascurain LR, Zenteno GE
Idioma: Español
Referencias bibliográficas: 88
Paginas: 39-48
Archivo PDF: 208.32 Kb.
RESUMEN
La respuesta inmunitaria protectora generada durante la tuberculosis es el resultado de la integración de las respuestas inmunitarias, natural y adquirida, a través de la activación de linfocitos T CD4+ productores de IFN-ʇ, permitiendo la eliminación del bacilo por macrófagos activados. La inmunosupresión, es la consecuencia de un desequilibrio en la respuesta inmunitaria con progreso de la infección. En este trabajo, se revisan las características de la respuesta inmunitaria contra
Mycobacterium tuberculosis así como los mecanismos celulares de supresión de la respuesta inmunitaria.
REFERENCIAS (EN ESTE ARTÍCULO)
Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Proyect. JAMA 1999; 282: 677-686.
Murray JF. Tuberculosis and HIV infection: global perspectives. Respirology 1997; 2: 209-213.
Hirsch CS, Johnson JL, Ellner JJ. Pulmonary tuberculosis. Curr Opin Pulm Med 1999; 5: 143-150.
Murray CJL, Styblo K, Rouillon A. Tuberculosis in developing countries; Burden, intervention and cost. Bull Int Union Tuberc Lung Dis 1990; 65: 6-24.
INEGI, SSA/DGEI. Principales causas de mortalidad general, Estados Unidos Mexicanos 1998. On line. Ssa.gob.mx. 10 ago 2000.
Riley RL, Mills CC, Nyka W, Weinstock N, Storey PB, Sultan LU, et al. Aerial dissemination of pulmonary tuberculosis: a two-year study of contagion in a tuberculosis ward, 1959. Am J Epidemiol 1995; 142: 3-14.
Dannenberg A. Roles of cytotoxic delayed-type hypersensitivity and macrophage-activating cell-mediated immunity in the pathogenesis of tuberculosis. Immunobiology 1994; 191: 461-473.
Schuluger NW, Rom W. The host immune response to tuberculosis. Am J Respir Crit Care Med 1998; 157: 679-691.
Tsao TC, Hong J, Huang C, Yang P, Liao SK, Chang KS. Increased TNF-alpha, IL-1 beta and IL-6 levels in the bronchoalveolar lavage fluid with the upregulation of their mRNA in macrophages lavaged from patients with active pulmonary tuberculosis. Tuber Lung Dis 1999; 79: 279-285.
Law K, Weiden M, Harkin T, Tchou-Wong K, Chi C, Rom WN. Increased release of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha by bronchoalveolar cells lavaged from involved sites in pulmonary tuberculosis. Am J Respir Crit Care Med 1996; 153: 799-804.
Tilg H, Dinarello C, Mier J. IL-6 and APPs: anti-inflamatory and immunosuppressive mediators. Immunology Today 1997; 18: 428-432.
Eigler A, Sinha B, Hartmann G, Endres S. Taming TNF: strategies to restrain this proinflamatory cytokine. Immunology Today 1997; 18: 487-492.
Chávez R, Reyes J, Maldonado G, Vázquez L, Estrada S, Gorocica P, et al. Moléculas de cooperación y regulación durante la migración celular de la respuesta inflamatoria. Rev Inst Nal Enf Resp Méx 1994; 7: 67-75.
Tramontana JM, Utaipat U, Mohillo A. Thalidomide treatment reduces tumor necrosis factor alpha production and enhances weigth gaing in patients with pulmonary tuberculosis. Mol Med 1995; 1: 384-397.
Del Pozo MA, Sánchez-Mateos P, Sánchez-Madrid F. Cellular polarization induced by chemokines: a mechanism for leukocyte recruiment? Immunology Today 1996; 17: 127-131.
Scall T, Bacon K. Chemokines, leukocyte trafficking and inflammation. Curr Opin Immunol 1994; 6: 865-873.
Hedrick J, Zlotnik A. Chemokines and lymphocyte biology. Curr Opin Immun 1996; 8: 343-347.
Jung S, Littman D. Chemokine receptors in lymphoid organ homeostasis. Curr Opin Immunol 1999; 11: 319-325.
Sauty A, Dziejman M, Taha R, Larossi A, Neote K, García-Zepeda E, et al. The T Cell-specific CXC chemokines IP-10, Mig, and I-TAC are expressed by activated human epithelial cells. J Immunology 1999; 162: 3549-3558.
Banglioni M, Dewald B, Moser B. Human chemokines: an update. Annu Rev Immunol 1997; 15: 675-705.
Wickremasinghe MI, Thomas LH, Friedland JS. Pulmonary epithelial cells are a source of IL-8 in the response to Mycobacterium tuberculosis: essential role of IL-1 from infected monocytes in a NF-kappa B-dependent network. J Immunol 1999; 163: 3936-3947.
Kasahara K, Sato I, Ogura K, Takeuchi H, Kobayashi K, Adachi M. Expression of chemokines and induction of rapid cell death in human blood neutrophils by Mycobacterium tuberculosis. J Infect Dis 1998; 178: 127-137.
Lin Y, Zhang M, Barnes PF. Chemokine production by a human alveolar epithelial cell line in response to Mycobacterium tuberculosis. Infect Immun 1998; 66: 1121-1126.
Mohammed K, Nasreen M, Ward M, Mubarak K, Rodríguez-Panadero F, Antony V. Mycobacterium-mediated chemokine expression in pleural mesothelial cells: Role of C-C chemokines in tuberculous pleuresy. JID 1998; 178: 1450-1456.
Sadek MI, Sada E, Toossi Z, Schwander SK, Rich EA. Chemokines induced by infection of mononuclear phagocytes with mycobacteria and present in lung alveoli during active pulmonary tuberculosis. Am J Respir Cell Mol Biol 1998; 19: 513-521.
Roman J, Jeon YJ, Gal A, Perez RL. Distribution of extracellular matrices, matrix receptors, and transforming growth factor-beta 1 in human and experimental lung granulomatous inflammation. Am J Med Sci 1995; 309: 124-133.
Ruscetti F, Varesio L, Ochoa A, Ortaldo J. Pleiotropic effects of transforming growth factor-beta on cells of the immune system. Ann NY Acad Sci 1993; 685: 488-500.
Sallusto F, Lanzavecchia A, Mackay C. Chemokines and chemokine receptors in T-cell priming and TH1/TH2-mediated responses. Immunology Today 1998; 19: 568-574.
Orme IM, Cooper AM. Cytokine/chemokine cascades in immunity to tuberculosis. Immunol Today 1999; 20: 307-312.
D’Andrea A, Rengaraju M, Variante N. Production of natural killer cell stimulatory factor (IL-12) by peripheral blood mononuclear cells. J Exp Med 1992; 176: 1387.
Akira S. The role of IL-18 in innate immunity. Curr Opin Immunol 2000; 12: 59-63.
Trinchieri G. Cytokines acting on or secreted by macrophages during intracellular infection (IL-10, IL-12, IFN-g). Curr Opinion Immunol 1997; 9: 24-34.
Cooper A, Roberts A, Rhoades J, Callahan D, Getzy D, Orme I. The role of interleukin 12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology 1995; 84: 423-432.
Chehimi J, Starr S, Frank I. Natural killer (NK) cell stimulatory factor increases the cytotoxic activity of NK cells from both healthy donors and human immunodeficiency virus-infected patients. J Exp Med 1992; 175: 789-796.
Garcia VE, Uyemura K, Sieling PA, Ochoa MT, Morita CT, Okamura H, et al. IL-18 promotes type 1 cytokine production from NK cells and T cells in human intracellular infection. J Immunol 1999; 162: 6114-6121.
Berke G. Unlocking the secrets of CTL and NK cells. Immunology Today 1995; 16: 343-346.
Krensky AM. Granulysin: a novel antimicrobial peptide of cytolytic T lymphocytes and natural killer cells. Biochem Pharmacol 2000; 59: 317-320.
Stenger S, Rosat JP, Bloom B, Krensky A, Modlin R. Granulysin: a letal weapon of cytolytic T cells. Immunology Today 1999; 20: 390-394.
Trincheri G. Interleukin 12 and interferon-gamma: Do they always go together? Am J Pathol 1995; 147: 1534-1538.
Orme I, Miller E, Roberts D, Furney S, Griffin J, Dobos K, et al. T lymphocytes mediate protection and cellular cytolysis during the course of Mycobacterium tuberculosis infection. Evidence for different kinetics and recognition of a wide spectrum of protein antigens. J Immunol 1992; 148: 189-196.
Ramachandra L, Chu R, Askew D, Noss EH, Canaday DH, Potter NS, et al. Phagocytic antigen processing and effects of microbial products on antigen processing and T-cell responses. Immunol Rev 1999; 168: 217-239.
Lukey PT, Latouf SE, Ress SR. Memory lymphocytes from tuberculous effusions: purified protein derivative (PPD) stimulates accelerated activation marker expression and cell cycle progression. Clin Exp Immunol 1996; 104: 412-418.
Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996; 14: 233-258.
Soler P, Boussaud V, Moreau J, Bergeron A, Bonnette P, Hance AJ, et al. In situ expression of B7 and CD40 costimulatory molecules by normal human lung macrophages and epithelioid cells in tuberculoid granulomas. Clin Exp Immunol 1999; 116: 332-339 .
Klaus P, Daniela W, Schondelmaier S, Kabelitz D. Primary activation of Vg 9-expressiong gd T cells by M. tuberculosis. Requirement for Th1-Type CD4 T cell help and inhibition by IL-10. J Immunol 1994; 152: 4984-4992.
Wesch D, Marx S, Kabelitz D. Comparative analysis of alpha beta and gamma delta T cell activation by Mycobacterium tuberculosis and isopentenyl pyrophosphate. Eur J Immunol 1997; 27: 952-956.
Moody DB, Ulrichs T, Muhlecker W, Young DC, Gurcha SS, Grant E, et al. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 2000; 404: 884-888.
Romagnani S. The Th1/Th2 paradigm. Immunol Today 1997; 18: 263-266.
Bonecini-Almeida MG, Chitale S, Boutsikakis I, Geng J, Doo H, He S, et al. Induction of in vitro human macrophage anti-Mycobacterium tuberculosis activity: requirement for IFN-gamma and primed lymphocytes. J Immunol 1998; 160: 4490-4499.
Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 1983; 158: 670-689.
Blackwell JM, Barton C, White J, Searle S, Barker A, Williams H, et al. Genomic organization and sequence of human NRAMP gene: identification and mappping of a promoter region polymorphism. Mol Med 1995; 1: 194-205.
Blacwell JM. Structure and function of the natural-resistance-associated macrophage protein (Nramp-1), a candidate protein for infectious and autoinmune disease susceptibility. Mol Med Today 1996; 2: 205-211.
Mazzaccaro R, Gedde M, Jensen E, Van Santen H, Ploegh H, Rock K, et al. Major histocompatibility class I presentation of soluble antigen facilitated by Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 1996; 93: 11786-11791.
Canaday D, Ziebold C, Noss E, Chervenak K, Harding C, Boom W. Activation of human CD8+ alpha beta TCR+ cells by Mycobacterium tuberculosis via an alternate class I MHC antigen-processing pathway. J Immunol 1999; 162: 372-379.
Smith S, Malin A, Pauline T, Atkinson S, Content J, Huygen K, et al. Characterization of human Mycobacterium bovis bacille Calmette-Guerin-reactive CD8+ T cells. Infect Immun 1999; 67: 5223-5230.
Oddo M, Renno T, Attinger A, Bakker T, MacDonald HR, Meylan PR. Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J Immunol 1998; 160: 5448-5454.
Janeway C, Travers P, Walport M. Immunobiology. The thymus and the development of T lymphocytes. 4a ed. Current Biology Publications 1999: 235-237.
Itohara S, Farr A, Lafaille J, Bonneville, Takagaki Y, Haas W, et al. Homing of a gd thymocyte subset with homogeneous T cell receptors to mucosal epithelia. Nature 1990; 343: 754-757.
Barnes P, Grisso C, Abrams J, Band H, Rea T, Modlin R. Gamma delta T lymphocytes in human tuberculosis. J Infect Dis 1992; 165: 506-512.
Boom WH. Gammadelta T cells and Mycobacterium tuberculosis. Microbes Infect 1999; 1: 187-195.
Ueta C, Tsuyuguchi I, Kawasumi H, Takashima T, Toba H, Kishimoto S. Increase of gd T cells in hospital workers who are in close contact with tuberculosis patients. Infect Immun 1994; 62: 5434-5441.
Moody D, Reinhold B, Guy M, Beckman E, Frederique D, Furlong S, et al. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 1997; 278: 283-286.
Fairhurs R, Wang C, Sieling P, Modlin R, Braun J. CD1-restricted T cells and resistance to polysaccharide-encapsulated bacteria. Immunology Today 1998; 19: 257-259.
Wen Li, Barber D, Pao W, Wong S, Owen M, Hayday A. Primary gd cell clones can be defined phenotypically and functionally as TH1/TH2 cells and illustrate the association of CD4 with TH2 differentiation. J Immunol 1998; 160: 1965-1974.
Ohno Y, Aoki N, Nishimura A. In vitro production of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1993; 77: 1072-1077.
Vila LM, Rios-Olivares E, Rios Z, Melendez M, Garcia M, Pichardo B. Abnormal immunological response to Mycobacterium tuberculosis antigens in a patient with chronic myelocytic leukemia and active tuberculosis. P R Health Sci J 1998; 17: 345-352.
Dahl KE, Shiratsuchi H, Hamilton BD, Ellner JJ, Toossi Z. Selective induction of transforming growth factor beta in human monocytes by lipoarabinomannan of Mycobacterium tuberculosis. Infect Immun 1996; 64: 399-405.
Law KF, Jagirdar J, Weiden MD, Bodkin M, Rom WN. Tuberculosis in HIV-positive patients: cellular response and immune activation in the lung. Am J Respir Crit Care Med 1996; 153: 1377-1384.
Meddows-Taylor S, Martin DJ, Tiemessen CT. Impaired interleukin-8-induced degranulation of polymorphonuclear neutrophils from human immunodeficiency virus type 1-infected individuals. Clin Diagn Lab Immunol 1999; 6: 345-351.
Altare F, Durandy A, Lammas D, Emile JF, Lamhamedi S, Casanova JL, et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 1998; 280: 1432-1435.
Sugawara I, Yamada H, Kaneko H, Mizuno S, Takeda K, Akira S. Role of interleukin-18 (IL-18) in mycobacterial infection in IL-18-gene-disrupted mice. Infect Immun 1999; 67: 2585-2589.
Fietta A, Francioli C, Gialdroni G. Mycobacterial lipoarabinomannan affects human polymorphonuclear and mononuclear phagocyte functions differently. Haematologica 2000; 85: 11-18.
Malik ZA, Denning GM, Kusner DJ. Inhibition of Ca(2+) signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J Exp Med 2000; 191: 287-302.
Chan J, Fan XD, Hunter SW, Brennan PJ, Bloom BR. Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect Immun 1991; 59: 1755-1761.
Casanova J, Jouanguy E, Lamhamedi S, Blance S, Fisher A. Immunological conditions of children with BCG dissemianted infection. Lancet 1995; 346: 581.
Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondaneche MC, Tuerlinckx D, Blanche S, et al. Partial interferon- gamma receptor 1 deficiency in a child with tuberculoid bacillus calmette-guerin infection and sibling with clinical tuberculosis. J Clin Invest 1997; 100: 2658-2664.
Noss EH, Harding CV, Boom WH. Mycobacterium tuberculosis inhibits MHC class II antigen processing in murine bone marrow macrophages. Cell Immunol 2000; 201: 63-74.
Hmama Z, Gabathuler R, Jefferies WA, Jong G, Reiner NE. Attenuation of HLA-DR expression by mononuclear phagocytes infected with Mycobacterium tuberculosis is related to intracellular sequestration of immature class II heterodimers. J Immunol 1998; 161: 4882-4893.
Jenkins Marc K. The role of cell division in the induction of clonal anergy. Immunology Today 1992; 13: 69-73.
Saha B, Das G, Vohra H, Ganguly NK, Mishra GC. Macrophage-T cell interaction in experimental mycobacterial infection. Selective regulation of co-stimulatory molecules on Mycobacterium-infected macrophages and its implication in the suppression of cell-mediated immune response. Eur J Immunol 1994; 24: 2618-2624.
Janeway C, Travers P, Walport M. Immunobiology. Antigen recognition by T lymphocytes. 4a ed. Current Biology Publications 1999; 154-155.
Ohmen JD, Modlin RL. Evidence for a superantigen in the pathogenesis of tuberculosis. Springer Semin Immunopathol 1996; 17: 375-384.
Somoskovi A, Zissel G, Zipfel PF, Ziegenhagen MW, Klaucke J, Haas H, et al. Different cytokine patterns correlate with the extension of disease in pulmonary tuberculosis. Eur Cytokine Netw 1999; 10: 135-142.
Zhang M, Lin Y, Iyer D, Gong J, Abrams J, Barnés P. T-Cell cytokine responses in human infection with Mycobacterium tuberculosis. Infect Immun 1995; 63: 3231-3234.
Hirsch C, Yoneda T, Averill L, Ellner J, Tootssi Z. Enhancement of intracellular growth of Mycobacterium tuberculosis in human monocytes by transforming growth factor beta 1. J Infect Dis 1994; 170: 1229-1237.
Hirsch C, Hussain R, Tosí Z, Dawood G, Shahid F, Ellner J. Cross-modulation by transforming growth factor beta in human tuberculosis: suppression of antigen-driven blastogenesis and interferon gamma production. Proc Natl Acad Sci USA 1996; 93: 3193-3198.
Crevel R, Karyadi E, Preyers F, Leenders M, Kullberg BJ, Nelwan R, et al. Increased production of interleukin 4 by CD4+ and CD8+ T cells from patients with tuberculosis is related to the presence of pulmonary cavities. JID 2000; 181: 1194-1197.
Bossiotis V, Tsai E, Yunis E, Thim S, Delgado J, Goldfeld A, et al. IL-10 producing T cells suppress immune responses in anergic tuberculosis patients. J Clin Invest 2000; 105: 1317-1325.