2012, Número 3
<< Anterior Siguiente >>
Ann Hepatol 2012; 11 (3)
Association between butyrylcholinesterase activity and low-grade systemic inflammation
Lampón N, Hermida-Cadahia EF, Riveiro A, Tutor JC
Idioma: Ingles.
Referencias bibliográficas: 42
Paginas: 356-363
Archivo PDF: 137.96 Kb.
RESUMEN
Sin resumen.
REFERENCIAS (EN ESTE ARTÍCULO)
Patocka J, Kuca K, Jun D. Acetylcholinesterase and butyrylcholinesterase. Important enzymes of human body. Acta Med (Hradec Králové) 2004; 47: 215-28.
Nemesánszky E. Enzyme tests in hepatobiliary disease. In: Moss DW, Rosalki SB (eds.). Enzyme Tests in Diagnosis. London: Arnold; 1996: 25-59.
Henderson AR, Moss DW. Enzymes. In: Burtis CA, Ashwood ER (eds.). Tietz Fundamentals of Clinical Chemistry. 5th. Ed. Philadelphia: W.B. Saunders Company; 2001, p. 352-89.
Rosas-Ballina M, Tracey KJ. Cholinergic control of inflammation. J Intern Med 2009; 265: 663-79.
Das UN. Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Med Sci Monit 2007; 13: RA214-RA221.
Rao AA, Sridhar GR, Das UN. Elevated butyrylcholinesterase and acetylcholinesterase may predict the development of type 2 diabetes mellitus and Alzheimer’s disease. Med Hypotheses 2007; 69: 1272-6.
Rao AA, Reddy CS, Sridhar GR, Annapurna A, Hanuman T, Pramela M, et al. Enhanced butyrylcholinesterase activity may be the common link triggering low-grade systemic inflammation and decrease in cognitive function in diabetes mellitus and Alzheimer’s disease. Current Nutr Food Sci 2008; 4: 213-6.
Darvesh S, LeBlanc AM, Macdonald IR, Reid GA, Bhan V, Macaulay RJ, Fisk JD. Butyrylcholinesterase activity in multiple sclerosis neuropathology. Chem Biol Interact 2010; 187: 425-31.
D’Amore PJ. Evolution of C-reactive protein as a cardiac risk factor. Labmedicine 2005; 36: 234-8.
Festa A, D’Agostino R, Howard G, Mykkänen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome. Circulation 2000; 102: 42-7.
Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003; 107; 363-9.
Sridhar GR, Rao AA, Srinavas K, Nirmala G, Lakshmi G, Suryanarayna D, et al. Butyrylcholinesterase in metabolic syndrome. Med Hypotheses 2010; 75: 648-54.
Randell EW, Mathews MS, Zhang H, Seraj JS, Sun G. Relationship between butyrylcholinesterase and the metabolic syndrome. Clin Biochem 2005; 38: 799-805.
Stojanov M, Stefanovic A, Dzingalasevic G, Mandic-Radic S, Prostran M. Butyrylcholinesterase activity in young and women: Association with cardiovascular risk factors. Clin Biochem 2011; 44: 623-6.
Nazarov PG, Krylova IB, Evdokimova NR, Nezhinskaya GI, Butyugov AA. C-reactive protein: a pentraxin with antiacethylcholine activity. Life Sci 2007; 80: 2337-41.
Wai CT, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, et al. A simple noninvasive index can predict fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003; 38: 518-26.
Fabris C, Smirne C, Toniutto P, Coletta C, Rapetti R, Minisini T, et al. Assessment of liver fibrosis progression in patients with chronic hepatitis C and normal alanine aminotransferase values. Clin Biochem 2006; 39: 339-43.
AHA/CDC scientific statement on markers of inflammation and cardiovascular disease. Circulation 2003; 107: 499-511.
Kariyone K, Shimatani Y, Kurihara T, Nagao T, Fujita Y, Uesegui M. Establishing indicators for diagnosis of cholinergic crisis [article in Japanese]. Rinsho Byori 2010; 58: 972-78.
Pugin J, Meisner M, Léon A, Gendrel D, Fernández-López A. Guide for the Clinical Use of Procalcitonin. 10th. Ed. Hennigsdorf: Thermo Fisher Scientific; 2011.
Li B, Sedlacek M, Manohoran I, Boopathy R, Duysen EG, Masson P, et al. Butyrylcoholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in plasma. Biochem Pharmacol 2005; 70: 1673-84.
Stojanov MD, Jovicic DM, Djuric SP, Konjevic MM, Todorovic ZM, Prostran MS. Butyrylcholinesterase activity and mortality risk in hemodialysis patients: Comparison to hs- CRP and albumin. Clin Biochem 2009; 42: 22-6.
Calderon-Margalit R, Adler B, Abramson JH, Gofin J, Kark JD. Butyrylcholinesterase activity, cardiovascular risk factors, and mortality in middle-aged and elderly men and women in Jerusalem. Clin Chem 2006; 52: 845-52.
Jung K. Enzyme tests in renal and urinary disease. In: Doss DW, Rosalki SB, (eds.). Enzyme Tests in Diagnosis. London: Arnold; 1996, p. 215-60.
Ofek K, Krabbe KS. Evron T, Debbecco M, Nielsen AR, Brunnsgaad H, et al. Cholinergic status modulations in human volunteers under acute inflammation. J Mol Med 2007; 85: 1239-51.
Ben Assayag E, Shenhar-Tsarfaty S, Ofek K, Soreq L, Bova I, Shopin L, et al. Serum cholinesterase activities distinguish between stroke patients and controls and predict 12-month mortality. Mol Med 2010; 16: 278-86.
Turecky TL, Kupcova V, Mojto V, Smuttny M, Uhlikova E, Vozar I. Serum cholinesterase activity and proteosynthetic function of liver in patients with diabetes mellitus. Bratisl Lek Listy 2005; 106: 266-9.
Valle A, O’Connor DT, Taylor P, Zhu G, Montgomery GW, Slagboom PE, et al. Butyrylcholinesterase: association with the metabolic syndrome and identification of 2 gene loci affecting activity. Clin Chem 2006; 52: 1014-20.
Das UN. Vagus nerve stimulation as a strategy to prevent and manage metabolic syndrome. Med Hypotheses 2011; 76: 429-33.
Hubbard RE, O’Mahony MS, Carver BL, Woodhouse KW. Plasma esterases and inflammation in ageing and frailty. Eur J Clin Pharmacol 2008; 64: 895-900.
Nomura F, Ohnishi K, Koen H, Hiyama Y, Nakayama T, Itoh Y, et al. Serum cholinesterase in patients with fatty liver. J Clin Gastroenterol 1986; 8: 599-602.
Iwasaki T, Yoneda M, Nakajima A, Terauchi Y. Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance. Intern Med 2007; 46: 1633-39.
Kawasaki S, Hasegawa O, Satoh S, Numata K, Terauchi Y. Sonographic assessment of fatty liver using the measure ment of para-and perirenal fat thickness. J Clin Ultrasound 2010; 38: 470-4.
Kawamoto R, Tabara Y, Kohara K, Miki T, Kusunoki T, Takayama S, et al. High-sensitivity C-reactive protein and gamma-glutamyltransferase levels are synergistically associated with metabolic syndrome in community-dwelling persons. Cardivasc Diabetol 2010; 9: 87.
Lee YJ, Kim JK, Lee JH, Lee HR, Kang DR, Shim JY. Association of serum gamma-glutamyltransferase with C-recative protein levels and white blood cell count in Korean adults. Clin Chem Lab Med 2008; 46: 1410-5.
Mason JE, Starke RD, Van Kirk JE. Gamma-glutamyl transferase: a novel cardiovascular risk biomarker. Prev Cardiol 2010; 13: 36-41.
Nistry D, Stockley RA. Gamma-glutamyltransferase: The silent partner? J Chronic Obstruct Pulmonar Dis 2010; 7: 285-90.
Cheung BMY, Ong KL, Cheung RV, Wong LYF, Wat NMS, Tam S et al. Association between plasma alkaline phosphatase and C-reactive protein in Hong Kong Chinese. Clin Chem Lab Med 2008; 46: 523-27.
Webber M, Krishman A, Thomas NG, Cheung BMY. Association between serum alkaline phosphatise and C-reactive protein in the United Staes National Health and Nutrition Examination Survey 2005-2006. Clin Chem Lab Med 2010; 48: 167-73.
Morgan ET. Regulation of cytochrome P450 during inflammation and infection. Drug Metab Rev 1997; 29: 1129-88.
Lampón N, Tutor JC. A preliminary investigation on the possible association between diminished copper availability and non-alcoholic fatty liver disease in epileptic patients treated with valproic acid. Upsala J Med Sci 2011; 116: 148-54.
LoPinto-Khoury C, Mintzer S. Antiepileptic drugs and markers of vascular risk. Current Treat Option Neurol 2010; 12: 300-8