2014, Número 3
<< Anterior
Rev Mex Mastol 2014; 4 (3)
Los microRNA: nuevos biomarcadores en cáncer de mama
López-Camarillo C, Fonseca-Sánchez MA, Astudillo-de la Vega H, Ruiz-García E, Guadarrama-Orozco JA, Sánchez-Forgach E, Muñoz-Gonzalez DE, Marchat LA
Idioma: Español
Referencias bibliográficas: 44
Paginas: 100-107
Archivo PDF: 283.31 Kb.
RESUMEN
Los RNA pequeños no codificantes o microRNA (miRNA) funcionan como reguladores negativos de la expresión génica. Diversos reportes indican que la expresión de algunos miRNA se encuentra alterada en distintos tipos de cáncer, tratándose ahora de correlacionar su expresión con factores clínicos, pronósticos y la respuesta a las terapias. Los miRNA son una familia de pequeños RNA monocatenarios no codificantes de 21-25 nucleótidos que se relacionan, pero son diferentes, a los RNA interferentes. Los miRNA reprimen la expresión génica al unirse a la región 3’ no traducida (UTR, del inglés
untranslated region) de un RNA mensajero (RNAm) blanco. Los miRNA son codificados en diversas regiones a lo largo de todo el genoma humano en
loci que previamente se consideraban sin función. Se cree que los miRNA se originaron como una defensa del hospedero contra el material genético extraño, como los virus RNA y elementos de transposición. Estimaciones del número total de genes que codifican los miRNA en humano se calculan en más de 1,000 distintos loci. Los miRNA son sintetizados por la RNA polimerasa II, produciendo un transcrito largo precursor. Durante la transcripción se forman regiones que hacen una horquilla mediante apareamiento de secuencias complementarias, generando así un miRNA primario (pri-miRNA) bicatenario. La estructura secundaria de tallo-burbuja del pri-miRNA es reconocida y procesada por la enzima Drosha, la cual posee actividad de RNAsa tipo III, generando precursores de 70-100 nucleótidos llamados miRNA precursores (pre-miRNA).
Diversos reportes muestran que la expresión diferencial de miRNA puede tener potencial valor diagnóstico y pronóstico en diversos tipos de cáncer.
REFERENCIAS (EN ESTE ARTÍCULO)
Martínez JL. Cáncer de mama. Boletín de Práctica Médica Efectiva. INSP. 2008. Secretaría de Salud. México.
International Agency for Research on Cancer, IARC. Cancer Mondial. http://www-dep.iarc.fr
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature. 2005; 435: 834-838.
Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005; 120: 21-24.
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120: 15-20.
Ambros V. The functions of animal microRNAs. Nature. 2004; 431: 350-355.
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature. 2004; 432 (7014): 231-235.
Shomron N, Levy C. MicroRNA-biogenesis and pre-mRNA splicing crosstalk. J Biomed Biotechnol. 2009; 2009: 594678.
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al. The microprocessor complex mediates the genesis of microRNAs. Nature. 2004; 432: 235-240.
Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004; 303 (5654): 95-98.
Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005; 436: 740-744.
Rand TA, Petersen S, Du F, Wang X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell. 2005; 123 (4): 621-629.
Jakymiw A, Lian S, Eystathioy T, Li S, Satoh M, Hamel JC et al. Disruption of P bodies impairs mammalian RNA interference. Nat Cell Biol. 2005; 7 (12): 1267-1274.
Zhang W, Dahlberg JE, Tam W. MicroRNAs in tumorigenesis: a primer. Am J Pathol. 2007; 171 (3): 728-738.
Osada H, Takahashi T. Let-7 and miR-17-92: small-sized major players in lung cancer development. Cancer Sci. 2011; 102 (1): 9-17.
Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004; 64: 3753-3756.
Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005; 65 (16): 7065-7070.
Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer. 2006; 5: 24.
Lowery AJ et al. Micro-RNA expression profiling in primary breast tumours. European Journal of Cancer. 2007; 5 Supplement 3:
Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007; 8: R214.
Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD et al. Endogenous human micro-RNAs that suppress breast cancer metastasis. Nature. 2008; 451: 147-152.
Hurst DR, Edmonds MD, Welch DR. Metastamir: the field of metastasis regulatory microRNA is spreading. Cancer Res. 2009; 69 (19): 7495-7498.
Krichevsky AM, Gabriely G. MiR-21: a small multi-faceted RNA. J Cell Mol Med. 2009; 13: 39-53.
Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007; 282: 14328-14336.
Iorio MV, Casalini P, Piovan C, Di Leva G, Merlo A, Triulzi T et al. MicroRNA-205 regulates HER3 in human breast cancer. Cancer Res. 2009; 69 (6): 2195-2200.
Gregory PA, Bert AG, Paterson EL et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008; 10: 593-601.
Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008; 22: 894-907.
Slamon DJ, Clark GM. Human breast cancer: correlation of relapse and survival with amplification of the Her-2/neu oncogene. Science. 1987; 235: 177-182.
Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell. 2005; 120: 635-647.
Peter ME. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle. 2009; 8 (6): 843-852.
Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007; 449: 682-688.
Crawford M, Brawner E, Batte K, Yu L, Hunter MG, Otterson GA et al. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem Biophys Res Commun. 2008; 373: 607-612.
Huang Q, Gumireddy K, Schrier M, Ie Sage C, Nagel R, Nair S et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008; 10: 202-210.
Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009; 137: 1032-1046.
Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Kerin MJ. MicroRNAs as novel biomarkers for breast cancer. Journal of Oncology. 2010; (2010), Article ID 950201, 7 pages.
Lopez-Camarillo C, Marchat LA, Arechaga-Ocampo E, Perez-Plasencia C, Del Moral-Hernandez O, Castaneda-Ortiz EJ, Rodriguez-Cuevas S. MetastamiRs: non-coding Micro RNAs driving cancer invasion and metastasis. Int J Mol Sci. 2012; 13 (2): 1347-1379.
Calin GA, Dumitru CD, Shimizu M et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002; 99 (24): 15524-15529.
Lawrie CH, Gal S, Dunlop HM et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008; 141 (5): 672-675.
Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008; 105 (30): 10513-10518.
Chen X, Ba Y, Ma L et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008; 18 (10): 997-1006.
Gilad S, Meiri E, Yogev Y et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008; 3 (9): e3148.
Chin LJ, Slack FJ. A truth serum for cancer-microRNAs have major potential as cancer biomarkers. Cell Res. 2008; 18 (10): 983-984.
Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene. 2007; 26 (19): 2799-2803.
Saito Y, Liang G, Egger G et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006; 9 (6): 435-443.