2014, Número 2
<< Anterior Siguiente >>
Rev Esp Cienc Salud 2014; 17 (2)
Metabolismo energético y cáncer
Valle MA, Soto CI
Idioma: Español
Referencias bibliográficas: 36
Paginas: 108-113
Archivo PDF: 416.71 Kb.
RESUMEN
Una de las características más importantes de muchos tipos de cáncer es que presentan un metabolismo
alterado, tienden a captar más eficientemente la glucosa y aumenta la glucólisis y esta última está
desacoplada del ciclo de Krebs y de la fosforilación oxidativa en mitocondria. La regulación del metabolismo
energético es compleja, existen proteínas reguladoras como HIF (una proteína prometastásica), la cual
disminuye el metabolismo oxidativo, mientras que p53 (supresor tumoral) promueve la fosforilación
oxidativa. Estos datos nos indican que una de las posibles funciones primarias de los oncogenes activados
y de los supresores de tumores inactivados es la reprogramación del metabolismo celular.
REFERENCIAS (EN ESTE ARTÍCULO)
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009; 324:1029-1033.
Warburg O. On the origin of cancer cells. Science 1956; 123: 309–14.
Warburg O, Posener, K, Negelein, E. Über den Stoffwechsel der Tumoren. Biochemische Zeitschrift. 1924; 152: 319–44.
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab, 2008; 7: 11-20.
Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell, 2008; 134: 703-707
Cairns R A, H arris I , M cCracken S , M ak T W. C ancer c ell metabolism. Cold Spring Harb Symp Quant Biol, 2011; 76: 299-311
Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell, 2008; 13: 472–482.
Sun F, Dai C, Xie J, Hu X. Biochemical issues in estimation of cytosolic free NAD/NADH ratio. PLoS ONE 2012; 7:e34525.
Moreno-Sánchez R, Marín-Hernández A, Saavedra E, Pardo JP, Ralph SJ, Rodríguez-Enríquez S. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. Int J Biochem Cell Biol, 2014; 50: 10-23.
Lu J, Tan M, Cai Q. The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Letters, 2014, http://dx.doi.org/10.1016/j.canlet.2014.04.001
Koppenol, W.H., Bounds, P.L., and Dang, C.V. (2011). Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325–337.
Czernin J, Phelps ME. Positron emission tomography scanning: current and future applications. Ann Rev Med, 2002; 53: 89-112.
Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, Mueller-Klieser W. Elevated tumor lactate concentrations predict for an increased risk of metastases in head and neck cancer. Int J Radiat Oncol Biol Phys, 2001; 51: 349-353.
Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller- Klieser W. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res, 2000; 60: 916-921.
Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorami SR, Tuveson DA, Thompson CB. ATP citrate liase inhibition can suppress tumor cell growth. Cancer Cell, 2005; 8: 311-321.
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thomspon CB. Beyond aerobic glycolisis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA, 2007; 104: 19345-19350.
Lunt SY, Vander Heiden MG. Aerobic glycolisis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol, 2011; 27: 441-464.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell, 2011; 144: 646-674.
Ward PS, Thompson CB. Metabolic Reprogramming: A cancer hallmark even Warburg did not anticipate. Cancer Cell, 2012; 21: 297-308
Dasu A, Toma-Dasu I, Karlsson M. Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys Med Biol, 2003; 48: 2829–2842.
Zeng W, Liu P, Pan W,Singh SR, Wei Y. Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett 2014; http://dx.doi. org/10.1016/j.canlet.2014.01.032.
Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Can, 1955; 9: 2829-2842.
Zeng W, et al. Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett, 2014; http://dx.doi.org/10.1016/j. canlet.2014.01.032.
Chung AS, Lee J, Ferrara N. Targeting the tumor vasculature: insights from physiological angiogenesis. Nat Rev Can, 2010; 10: 505-514.
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 2001; 292: 464-468
Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol, 2004; 5: 343-354.
Semenza GL. Defining the role of hypoxia–inducible factor 1 in cancer biology and therapeutics. Oncogene, 2010; 5: 625-634.
Kim J, Tchernyshyov I, Semenza GL, Dang CV. HIF-1 mediates expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab, 2006; 3: 177-185.
Dang CV. MYC on the path to cancer. Cell, 2012; 149: 22-35.
Deblois G, Giguère V. Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nat Rev Can, 2013; 13: 27-36.
Cai Q, Lin T, Kamarajugadda S, Lu J. Regulation of glycolysis and the Warburg effect by estrogen-related receptors. Oncogene, 2013; 32: 2079-2086.
Tello D, Balsa E, Acosta-Iborra B, Fuertes-Yebra E, Elorza A, Ordoñez A, Corral-Escariz M, Soro I, López-Bernardo E, Perales- Clemente E, Martínez-Ruiz A, Enríquez JA, Aragonés J, Cadenas S, Landázuri MO. Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting Complex I activity. Cell Metab, 2011; 14: 768-779.
Berkers CR, Maddocks ODK, Cheung EC, Mor I, Vousden KH. Metabolic regulation by p53 family members. Cell Metab, 2013; 18: 617-633.
Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM. p53 regulates mitochondrial respiration. Science, 2006; 312: 1650-1653.
Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase PDK2. Can Res, 2012; 72: 560-567.
Bensaad K, Tsuruta A, Selak MA, Vidal MNC, Nakano K, Bartrons R, Gottlieb E, Vousden KH. TIGAR, a p53-inducible regulator of glycolisis and apoptosis. Cell, 2006; 126: 107-120.