2014, Número 2
<< Anterior Siguiente >>
Rev Esp Cienc Salud 2014; 17 (2)
Ciclo celular: Mecanismos de regulación
Lagunas CMC, Valle MA, Soto CI
Idioma: Español
Referencias bibliográficas: 52
Paginas: 98-107
Archivo PDF: 514.58 Kb.
RESUMEN
El ciclo celular es un proceso en el cual una célula crece y se divide para crear una copia de sí misma,
permitiendo crecer y reemplazar las células a medida que se desgastan. En los animales, el ciclo de una
célula normal toma alrededor de 24 horas de principio a fin para los diferentes tipos de células, aunque
algunas, como las de la piel o las tumorales, están constantemente pasando por este ciclo, mientras
que otras pueden dividirse rara vez, o no hacerlo.
La secuencia de eventos que se producen cuando se estimula una célula para crecer y dividirse
constituye el ciclo celular. Inicia con células en reposo (fase G0), las cuales tienen que ser estimuladas
por factores de crecimiento con el fin de entrar en el ciclo celular, lo que comienza con el primer período
de crecimiento (fase G1) en el que se prepara para un período de síntesis de ADN (fase S). Hacia el
final de G1, hay un punto de restricción (R), en que se repara el ADN en caso de estar dañado. De no
ser así, sigue adelante el ciclo. Una vez que se han duplicado sus cromosomas, la célula entra a un
segundo período de crecimiento (fase G2), cuando se prepara para dividirse en dos células hijas durante
el período de la mitosis (fase M). Esta fase M se divide en una serie de pasos discretos que comienzan
con la profase y luego pasan a través de la metafase, anafase, telofase y, finalmente, el proceso de la
citocinesis, que divide la célula en dos iguales.
REFERENCIAS (EN ESTE ARTÍCULO)
Coudreuse D and Nurse P. Driving the cell cycle with a minimal CDK control network. Nature. 2010; 468 (23):1074-1080.
Young TK and Min Z. Aberrant Cell Cycle Regulation in Cervical Carcinoma Yonsei Medical Journal. 2005; 46(5):597–613.
Sherr CJ.. Gl Phase Progression: Cycling on Cue. Cell. 1994; 79(4):551-555.
Suárez N, Gil CG, Marco AM, Ortega A, Trinidad P. Tratado de otorrinolaringología y cirugía de cabeza y cuello. Madrid. Editorial Médica Panamericana. 2007; Pp. 247.
Zhou BB and Elledge SJ. . The DNA damage response: putting checkpoints in perspective. Nature. 2000; 408(6811):433-439.
Kastan MB1, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004; 432(7015):316-323.
Sperka T1, Wang J, Rudolph KL. DNA damage checkpoints in stem cells, ageing and cancer. Nature reviews. Molecular cell biology. 2012; 13(9):579-90.
Klermund, Bender K, Luke B. High Nutrient Levels and TORC1 Activity Reduce Cell Viability following Prolonged Telomere Dysfunction and Cell Cycle Arrest. Cell reports. 2014; 9(1):324-35. doi: 10.1016/j.celrep.2014.08.053.
Duronio RJ and Xiong Y. Signaling pathways that control cell proliferation. Cold Spring Harbor perspectives in biology. 2013; 5(3):a008904. doi: 10.1101/cshperspect.a008904.
Giacinti C and Giordano A. RB and cell cycle progression. Oncogene. 2006; 25(38):5220-5227.
Neganova and Lako M. G1 to S phase cell cycle transition in somatic and embryonic stem cells. Journal of anatomy. 2008; 213(1):30-44. doi: 10.1111/j.1469-7580.2008.00931.x.
Frolov MV and Dyson NJ. Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. Journal of cell science. 2004; 117(Pt 11):2173-2181.
Musgrove EA, Caldon CE, Barraclough J, Stone A and Sutherland RL. Cyclin D as a therapeutic target in cancer. Nature review in cancer. 2011;11(8): 558-572.
Schulz GM, Machado DC, Jeckel, Schenk MV. Cyclin D1 expression and cervical metastases in squamous cell carcinoma of the mouth. Revista Bras otorinolaringol. 2007; 73(1):93-100.
Miettinen HE, Paunu N, Rantala I, Kalimo H, Paljärvi L, Helin H, Haapasalo H. Cell cycle regulators (p21, p53, pRb) in oligodendrocytic tumors: a study by novel tumor microarray technique. 2001; 55(1):29- 37.
Wu J, Lv Q, He J, Zhang H, Mei X, Cui K, Huang N, Xie W, Xu N, Zhang Y. MicroRNA-188 suppresses G1/S transition by targeting multiple cyclin/CDK complexes. Cell Communication and Signaling. 2014; 12(1):66.
Cho HJ and Park JH. Kaempferol Induces Cell Cycle Arrest in HT-29 Human Colon Cancer Cells. Journal of cancer prevention. 2013; 18(3):257-263.
Lu X1, Jung Ji, Cho HJ, Lim DY, Lee HS, Chun HS, Kwon DY, Park JH. Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells. The Journal of nutrition. 2005; 135(12):2884-90.
Cao Z, Li X, Li J, Luo W, Huang C, Chen J. X-linked inhibitor of apoptosis protein (XIAP) lacking RING domain localizes to the nuclear and promotes cancer cell anchorage-independent growth by targeting the E2F1/Cyclin E axis. Oncotarget. 2014; 5(16):7126-137.
Little and Stewart CJS. Cyclin D1 immunoreactivity in normal endocervix and diagnostic value in reactive and neoplastic endocervical lesions. 2010; 23(4): 611-618.
Zentella DA, López MR, Gómez GE, Paredes GRE y Ibarra SMJ. El ciclo celular y su regulación: La interacción entre las proteínas cinasas CDKs y la familia de las ciclinas. Revista de Educación Bioquímica. 1996; 15(1): 4-12.
Besson A, Dowdy SF, and Roberts JM. CDK Inhibitors: Cell Cycle Regulators and Beyond. 2008;14(2): 159-169.
Lee M, Song BJ and Kwon Y. Ethanol Mediates Cell Cycle Arrest and Apoptosis in SK-N-SH Neuroblastoma Cells. Journal of cancer prevention. 2014; 19(1):39-46.
Casini T and Pelicci PG. A function of p21 during promyelocytic leukemia cell differentiation independent of CDK inhibition and cell cycle arrest. Oncogene. 1999;18 (21):3235-3243.
Campbell Neil A, Urry L, Jane B Reece. Biología. Madrid. Médica Panamericana, 7ma edición. 2010. Pp 221.
http://www.med.ufro.cl/clases_apuntes/cs_basica/bioquimica_ dr_rocha/O-CAPITULO_14-vinc-segunda-edicion.pdf consultado noviembre 2014.
Quezada RMA. El ciclo celular, sus alteraciones en cáncer y como es regulado en células troncales embrionarias. Contactos. 2007; 65:5-12.
Peralta-Zaragoza O, Bahena-Román M, Díaz-Benítez CE, Madrid-Marina V. Regulación del ciclo celular y desarrollo de cáncer: perspectivas terapéuticas. Salud Pública México 1997; 39(5):451-462.
Fumagalli M, Rossiello F, Mondello C, d’Adda di Fagagna F. Stable Cellular Senescence Is Associated with Persistent DDR Activation. Plus one. 9(10):| e110969. doi: 10.1371/journal.pone.0110969. eCollection 2014.
Hansakul P, Aree K, Tanochit S, Itharat A. Growth arrest and apoptosis via caspase activation of dioscoreanone in human nonsmall- cell lung cancer A549 cells. BioMed Central complementary and alternative medicine Complementary and alternative medicine. 2014; 14(1):413.
Tang D1, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW and Ingram AJ. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem. 2002; 277(15):12710-12717.
Yan Y1, Hein AL1, Etekpo A2, Burchett KM2, Lin C1, Enke CA1, Batra SK3, Cowan KH2, Ouellette MM4. Inhibition of RAC1 GTPase sensitizes pancreatic cancer cells to g-irradiation. Oncotarget. 2014; [Epub ahead of print].
Spurgers KB, Gold DL, Coombes KR, Bohnenstiehl NL, Mullins B, Meyn RE, Logothetis CJ, McDonnell TJ. Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression. The Journal of biological chemistry. 2006; 281(35):25134- 25142.
Otsuka and Ochiya. Genetic Networks Lead and Follow Tumor Development: MicroRNA Regulation of Cell Cycle and Apoptosis in the p53 Pathways. BioMed research international. 2014; 2014:749724 doi: 10.1155/2014/749724.
Gonfloni S, Iannizzotto V, Maiani E, Bellusci G, Ciccone S and Diederich M.. P53 and Sirt1: Routes of metabolism and genome stability. Biochemical pharmacology. 2014; S0006-2952(14)00524-3. doi: 10.1016/j.bcp.2014.08.034. [Epub ahead of print].
Bergot AS, Ford N, Leggatt GR, Wells JW, Frazer IH and Grimbaldeston MA. HPV16-E7 Expression in Squamous Epithelium Creates a Local Immune Suppressive Environment via CCL2- and CCL5- Mediated Recruitment of Mast Cells. Plos one. 2014; 10(10):e1004466.
Hanahan D and Weinberg A R. The Hallmarks of Cancer. Cell; 2000;100: 57-70.
Koay MHE, Crook M and Stewart CJR. Cyclin D1, E-cadherin and beta-catenin expression in FIGO Stage IA cervical squamous carcinoma: diagnostic value and evidence for epithelial–mesenchymal transition. Histopathology. 2012; 61(6): 1125–1133.
Tan HK1, Moad AI, Tan ML. The mTOR Signalling Pathway in Cancer and the Potential mTOR Inhibitory Activities of Natural Phytochemicals. Asian Pacific Journal Cancer Prevention. 2014; 15(16):6463-6475.
Ledoa B, Covadonga M, Sánchez CC, de la Peña G, Blanco S, Linder JF, Gómez CD and Lasunción MA. Papel de p38 MAPK en los efectos de la inhibición de la biosíntesis de colesterol en la progresión del ciclo celular en la línea promielocítica humana HL-60. 2008; 20(5): doi: 10.1016/S0214-9168(08)75906-0.
Okinaga T, Ariyoshi W, Akifusa S and Nishihara T. Essential role of JAK/STAT pathway in the induction of cell cycle arrest in macrophages infected with periodontopathic bacterium Aggregatibacter actinomycetemcomitans. Medical microbiology and immunology. 2013; 202(2):167-174.
Klement K and Goodarzi AA. DNA double strand break responses and chromatin alterations within the aging cell. Experimental cell research. Experimental cell research. 2014; S0014-4827(14)00382-6. doi: 10.1016/j.yexcr.2014.09.003. [Epub ahead of print].
Schmitt E, Paquet C, Beauchemin M, and Bertrand. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. Journal of Zhejiang University. Science. 2007; 8(6):377-97.
Vincent K, Pichler M, Lee GW, Ling H. MicroRNAs, Genomic Instability and Cancer. International journal of molecular sciences. 2014; 15(8):14475-14491.
Hu H and Gatti RA. MicroRNAs: new players in the DNA damage response. Journal of molecular cell biology. 2010; 3(3):151-158.
Kato M, Paranjape T, Müller RU, Nallur S, Gillespie E, Keane K, Esquela-Kerscher A,Weidhaas JB, Slack FJ. The mir-34 microRNA is required for the DNA damage response in vivo in C. Elegans and in vitro in human breast cancer cells. 2009; 28(25): 2419-2424.
Zhang H, Li Y, Lai M. The microRNA network and tumor metastasis. Oncogene. 2010; 29(7): 937-948.
Georges SA, Biery MC, Kim SY, Schelter JM, Guo J, Chang AN, Jackson AL, Carleton MO, Linsley PS, Cleary MA, Chau BN. Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Research 2008; 68(24): 10105-10112.
Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes and Cancer. 2004; 39(2): 167-169.
Iorio MV, Ferracin M , Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosemberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Research. 2005; 65; (16): 7065-7070.
Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka J, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer cell. 2006; 9(3): 189-198.
Bagnyukova TV, Pogribny IP, Chekhun VF. MicroRNAs in normal and cancer cells: a new class of gene expression regulators. Experimental Oncology. 2006; 28(4): 263-269.