2014, Número 3
<< Anterior Siguiente >>
Biotecnol Apl 2014; 31 (3)
Determinación del efecto del tamaño y la edad del inóculo en la producción de lipasa por Geotrichum candidum
Resende MR, Fernandes MBJ, Aguiar-Oliveira E, Durrant L, Mazutti MA, Maugeri FF, Rodrigues MI
Idioma: Ingles.
Referencias bibliográficas: 36
Paginas: 216-221
Archivo PDF: 293.59 Kb.
RESUMEN
Las lipasas son enzimas extremadamente versátiles. Se utilizan en varias aplicaciones industriales, y han sido objeto de atención recientemente. Una diversidad de microrganismos puede producirlas, tales como los hongos pluricelulares. Sin embargo, para el estudio de estas enzimas se debe optimizar su crecimiento, debido a las variaciones entre los experimentos, que influyen en los resultados y en la reproducibilidad de los procesos. El objetivo de este trabajo fue investigar el tamaño y la edad idóneos del inóculo
Geotrichum candidum NRRLY-552, con el fin de reducir su variabilidad.
El procedimiento optimizado para el inóculo se determinó como una zona circular (0.79 cm
2) de medio sólido, que contenía células y esporas, añadido a 100 mL de medio de cultivo (peptona 5.0 % p/v, NaNO
3 0.1 % p/v, MgSO
4 0.1 % p/v y aceite de soya 1.0 % p/v) que se incubaron durante 15 h a 30 °C, 250 rpm, con un pH inicial de 7.0. Este procedimiento permitió reducir el error experimental de 30 a 20 %, y se ha aplicado con éxito en varios estudios.
REFERENCIAS (EN ESTE ARTÍCULO)
Alberghina L, Schmid RD, Verger R, editors. Lipases: structure, mechanism and genetic engineering, Weinheim: VCH; 1991.
Maldonado RR, Macedo GA, Rodrigues MI. Lipase production using microorganisms from different agro-industrial by products. Int J App Scien Tech. 2014;4(1):108-15.
Treichel H, de Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV. A review on microbial lipases production. Food Bioprocess Technol. 2010;3(2):182-96.
Aravindan R, Anbumathi P, Viruthagiri T. Lipase applications in food industry. Ind J Biotech. 2007;6:141-58.
Gandhi NN. Applications of lipase. J Amer Oil Chem Soc. 1997;74(6):621-34.
Gopinath SCB, Anbu P, Lakshmipriya T, Hilda A. Strategies to Characterize Fungal Lipases for Applications in Medicine and Dairy Industry. BioMed Res Int. 2013;Article ID 154549. [cited 2014 Dic 16]. Available from: http://dx.doi. org/10.1155/2013/154549.
Ribeiro BD, de Castro AM, Coelho MA, Freire DM. Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Res. 2011;2011:615803.
Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and applications of lipases. Biotechnol Adv. 2001;19(8):627-62.
Tan T, Lu J, Nie K, Deng L, Wang F. Biodiesel production with immobilized lipase: A review. Biotechnol Adv. 2010;28(5):628-34.
Monhaghan MM, Gagliardi SL, Streicher AL, Demian JE. Culture preservation and inoculum development. In: Demain AL, Davies JE, editors. Manual of Industrial Microbiology and Biotechnology. 2nd ed. Washington: ASM Press; 1999.
Stanburry PF, Whitatker J, Hall SJ. Principles of Fermentation Technology. Oxford: Pergamon, 1995.
Davis KE, Joseph SJ, Janssen PH. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol. 2005;71(2):826-34.
Kumar R, Mahajan S, Kumar A, Singh D. Identification of variables and value optimization for optimum lipase production by Bacillus pumilus RK31 using statistical methodology. Nat Biotechnol. 2011;28(1):65-71.
Teng Y, Xu Y. Culture condition improvement for whole-cell lipase production in submerged fermentation by Rhizopus chinensis using statistical method. Bioresour Technol. 2008;99(9):3900-7.
Vanot G, Deyris V, Guilhem MC, Phan Tan Luu R, Comeau LC. Optimal design for the maximization of Penicillium cyclopium lipase production. Appl Microbiol Biotechnol. 2001;57(3):342-5.
Vanot G, Valerie D, Guilhem MC, Phan Tan Luu R, Comeau LC. Maximizing production of Penicillium cyclopium partial acylglycerol lipase. Appl Microbiol Biotechnol. 2002;60(4):417-9.
Sen R, Swaminathan T. Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production. Biochem Eng J. 2004;21(2):141-8.
Kammoun R, Naili B, Bejar S. Application of a statistical design to the optimization of parameters and culture medium for alpha-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product). Bioresour Technol. 2008;99(13):5602-9.
Beg QK, Sahai V, Gupta R. Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochem. 2003;39(2):203-9.
Asses N, Ayed L, Bouallagui H, Ben Rejeb I, Gargouri M, Hamdi M. Use of Geotrichum candidum for olive mill wastewater treatment in submerged and static culture. Bioresour Technol. 2009;100(7):2182-8.
Burkert JF, Maugeri F, Rodrigues MI. Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresour Technol. 2004;91(1):77-84.
Burket JFM, Maldonado RR, Maugeri F, Rodrigues MI. Comparison of lipase production by Geotrichum candidumin stirred and airlift fermenters. J Chem Tech Biotechnol. 2005;80(1):61-7.
Kamimura ES, Mendieta O, Sato HH, Pastore G, Maugeri F. Production of Lipase from Geotrichum sp. and Adsorption Studies on Affinity Resin. Braz J Chem Eng. 1999;16(2):102-12.
Maldonado RR, Panciera AL, Macedo GA, Mazutti MA, Maugeri F, Rodrigues MI. Improvement of lipase production from Geotrichum sp. in shaken flasks. Chem Ind Chem Eng Quart. 2012;18(3):459-64.
Maldonado RR, Burkert JFM, Mazutti MA, Maugeri F, Rodrigues MI. Evaluation of lipase production by Geotrichum candidum in shaken flasks and bench-scale stirred bioreactor using different impellers. Biocat Agric Biotechnol. 2012;1(2):147-51.
Freire DM, Teles EM, Bon EP, Sant’ Anna GL, Jr. Lipase production by Penicillium restrictum in a bench-scale fermenter : effect of carbon and nitrogen nutrition, agitation, and aeration. Appl Biochem Biotechnol. 1997;63-65:409-21.
Aver’yanov AA, Lapikova VP, Pasechnik TD, Zakharenkova TS, Baker CJ. Selfinhibition of spore germination via reactive oxygen in the fungus Cladosporium cucumerinum, causal agent of cucurbit scab. Eur J Plant Path. 2011;130(4):541-50.
Griffin DH. Fungal physiology. 2nd ed. New York:Willey-Liss; 1994.
Macko V, Staples RC, Yaniv Z, Granados RR. Self-inhibitors of fungal spores germination - The fungal spore. New York: Academic Press; 1976.
Kulkarni RK, Nickerson KW. Nutritional control of dimorphism in Ceratocystis ulmi. Exp Mycol. 1981;5(2):148-52.
Domingues FC, Queiroz JA, Cabral JM, Fonseca LP. The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enzyme Microb Technol. 2000;26(5- 6):394-401.
Qinnghe C, Xiaoyu Y, Tiangui N, Cheng J, Qiugang M. The screening of culture condition and properties of xylanase by white-rot fungus Pleurotus ostreatus. Proc Bioch. 2004;39(11):1561-6.
Genckal H, Tari C. Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enz Microb Technol. 2006; 39(4):703-10.
Rodrigues MI, Iemma AF. Planejamento de Experimentos e Otimização de Processos. 2nd ed. Campinas: Caritas; 2009.
Maldonado RR, Aguiar-Oliveira E, Pozza EL, Costa FAA, Maugeri Filho F, Rodrigues MI. Production of lipase from Geotrichum candidum using corn steep liquor in different bioreactors. J Amer Oil Chem Soc. 2014; 91(12):1999-2009.
Maldonado RR, Aguiar-Oliveira E, Pozza EL, Costa FAA, Mazutti MA, Maugeri F, et al. Application of yeast hydrolysate in extracellular lipase production by Geotrichum candidum in shaken flasks, stirred tank and airlift reactors. Can J Chem Eng. Accepted in November, 2014.