2014, Número 2
<< Anterior Siguiente >>
Revista Cubana de Ortopedia y Traumatología 2014; 28 (2)
Aplicación de los modelos mecanobiológicos en los procesos de regeneración ósea
Cisneros HYÁ, González CRA, Camue CE, Oropesa RY, Puentes ÁA
Idioma: Español
Referencias bibliográficas: 24
Paginas: 214-222
Archivo PDF: 300.38 Kb.
RESUMEN
Los modelos computacionales constituyen una herramienta necesaria en las
investigaciones científicas. En este trabajo se muestra la utilización de las nuevas
tecnologías, a través del Método de los Elementos Finitos en la implementación de los
modelos mecanobiológicos usados en ortopedia. Se exponen los principales modelos
mecano-reguladores que aparecen en la bibliografía y se ejemplifican las ventajas que
proporcionan las técnicas de modelación en el pronóstico de la formación de nuevo
tejido óseo, como respuesta biológica del organismo debido a la aplicación de cargas
externas.
REFERENCIAS (EN ESTE ARTÍCULO)
Isaksson H. Recent advances in mechanobiological modeling of bone regeneration. Mech Res Commun. 2012;42(0):22-31.
Wallace I, Kwaczala A, Judex S, Demes B, Carlson K. Physical activity engendering loads from diverse directions augments the growing skeleton. J Musculoskelet Neuronal Interact. 2013;13(3):245-50.
Stern AR, Nicolella DP. Measurement and estimation of osteocyte mechanical strain. Bone. 2013;54(2):191-5.
Hambli R. Connecting Mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling. Frontiers in Bioengineering and Biotechnology; 2014. doi: 10.3389/fbioe.2014.00006
González Carbonell RA, Nápoles Padrón E, Claderín Pérez B, Hidalgo Cisneros YA, Landín Sorí M. Carácter interdisciplinario de la modelación computacional en la solución de problemas de salud. Rev Hum Med. 2014;14(3):646-58.
Menzel A, Kuhl E. Frontiers in growth and remodeling. Mech Res Commun. 2012;4:1-14.
Levchuk A, Müller R. In Vivo Validation of Predictive Models for Bone Remodeling and Mechanobiology. En: Holzapfel GA, Kuhl E, editores. Computer Models in Biomechanics. Netherlands: Springer; 2013. p. 383-94.
Boccaccio A, Pappalettere C. Mechanobiology of Fracture Healing: Basic Principles and Applications in Orthodontics and Orthopaedics En: Klika V, editor. Theoretical Biomechanics. 2011. p. 21-48.
Pauwels F. Eine neue Theorie über den Einfluß mechanischer Reize auf die Differenzierung der Stützgewebe. Zeitschrift für Anatomie und Entwicklungsgeschichte. 1960;121(6):478-515.
Carter DR, Wong M. The role of mechanical loading histories in the development of diarthrodial joints. J Orthop Res. 1988;6(6):804-16.
Carter DR, Blenman P, Beaupre G. Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res. 1988;6(5):736-48.
Beaupré GS, Orr TE, Carter DR. An approach for time-dependent bone modeling and remodeling—theoretical development. J Orthop Res. 1990;8(5):651-61.
Claes L, Heigele C. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech. 1999;32(3):255-66.
Carter DR, Beaupré GS, Giori NJ, Helms JA. Mechanobiology of skeletal regeneration. Clin Orthop Relat Res. 1998;355:S41-S55.
Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ. Adaptive bone-remodeling theory applied to prosthetic-design analysis. Journal of Biomechanics. 1987;20(11-12):1135-50.
Prendergast P, Huiskes R, Søballe K. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech. 1997;30(6):539-48.
Holzapfel G, Kuhl E. Computer Models in Biomechanics. Berlín: Springer, Heidelbergr; 2013.
González Carbonell R, Alvarez García E, Moya Rodríguez J. Tacón de Torque para uso Ortopédico: Propuesta de un Nuevo Diseño. En: Folgueras Méndez J, Aznielle Rodríguez TY, Calderón Marín CF, Llanusa Ruiz SB, Castro Medina J, Vega Vázquez H, et al., editores. V Latin American Congress on Biomedical Engineering CLAIB 2011. IFMBE Proceedings 33. Berlin: Springer Heidelberg; 2013. p. 912-5.
Long M, Sato M, Lim C, Wu J, Adachi T, Inoue Y. Advances in Experiments and Modeling in Micro- and Nano-Biomechanics: A Mini Review. Cel Mol Bioeng. 2011;4(3):327-39.
Cisneros Hidalgo YA, González Carbonell RA, Puente Álvarez A, Camue Corona E, Oropesa Rodríguez Y. Generación de imágenes tridimensionales: integración de tomografía computarizada y método de los elementos finitos. Rev Cub Inv Bioméd. 2014;En prensa.
Carretta R, Lorenzetti S, Müller R. Towards patient-specific material modeling of trabecular bone post-yield behavior. International Journal for Numerical Methods in Biomedical Engineering. 2013;29(2):250-72.
Scholz R, Hoffmann F, von Sachsen S, Drossel W-G, Klöhn C, Voigt C. Validation of density–elasticity relationships for finite element modeling of human pelvic bone by modal analysis. J Biomech. 2013;46(15):2667-73.
Sadia B, Khan ZA, Iqbal S, Mansoor SB, Malik MM. Editors. Deriving mechanical properties from CT scan for surgical simulation. IEEE Proc Region 10 Conference at TENCON 2013; 2013.
Figueredo Losada H. Modelo mecanobiológico de formación ósea, basado en la teoría de daño-reparo [tesis doctoral]. La Habana: ISPJAE; 2010.