2004, Número 3
<< Anterior Siguiente >>
Gac Med Mex 2004; 140 (3)
Fosforilación de tau y enfermedad de Alzheimer
García T, Jay D
Idioma: Español
Referencias bibliográficas: 52
Paginas: 329-334
Archivo PDF: 528.67 Kb.
RESUMEN
Tau forma parte importante del citoesqueleto en neuronas;
estabilizando microtúbulos, manteniendo la forma celular
y como vía de transporte axonal. Sin embargo, por
mecanismos desconocidos, tau sufre modificaciones
importantes como son fosforilación anormal debida a la
actividad desequilibrada de varias cinasas y fosfatasas,
afectando su función biológica normal. Bajo estas
circunstancias tau comienza a agregarse originando
complejos protéicos denominados desarreglos
neurofibrilares (NFTS) que son hallazgos histopatológicos
característicos de la enfermedad de Alzheimer junto con las
placas seniles. Esta revisión esta enfocada principalmente
a describir la estructura de tau y la participación de
diferentes cinasas en su regulación.
REFERENCIAS (EN ESTE ARTÍCULO)
Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tang les of Alzheimer’s Disease. Clin Neurosci. 1989;3:519-526.
Himmler A. Structure of the bovine tau gene: Alternatively spliced transcripts generate a protein family. Mo Ce Biol 1989;9:1389-1395.
Luc Buée, Thierry Bassiére, Valérie Buée-Scherrer. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Review 2000;33:95-1 30.
Lovestone S, Reynolds CH. The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative process. Neurosc 1997;78:309-324.
Mandelkow EM, Biernat J, Drewes G, Gustke N, Trinezek B, Mandelkow E. Tau domains, phosphorylation, and interactions with microtubules. Neurobiol. Aging 1995;16:355-362.
Goedert M, Jakes R. Expression of separate isoforms of human tau protein: correlation with tau patter in brain and effects on tubulin polimerzation. EMBO J 1990;9:4225-4230.
Scott CW, Blowera DP, Barth PT, Lo MMST, Salana AI, Capato CB. Differences in the abilities of human tau isoforms to promote microtubule assembly. J Neurosci Res 1991;30:42254230.
While H, Drewes G, Biernat J, Mandelkow EM. Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J Cell Biol 1992;118:573-584.
Goedert MT, Baur CP, Ahringer J, Jakes R, Hasegawa M, Spillantini M. GT Smith M. J, Hill F. PTL-1 a microtubule-associated protein with tau-like repeats from nematode Caenorhabditis elegans. J Cell Sc 1996;109:2661-2672.
McDermott J. B, Aamodt S. ptl-1 Caenohabditis elegans gene whose products are homologous to the tau microtubule-associated proteins. Biochem 1996;35:9415-9423.
Cambiazo V, Gonzalez MT Maccioni RB. DMAP-85: a tau like protein from Drosophlla melanogaster larvae. J Neurochem 1995;64:1288-1297.
Irminger-Finger IT Laymond R. A Goldstein LS. Analysis of the primary sequence and microtubule binding region of the Drosophila 205 K MAD. J Ceil Bol 1990;111:2563-2572.
Liu YT Xia JT Maa DT Faber D. ST Fischer I. Tau like proteins in the nervous system of goldfish. Neurochem Res 1997;22:1511-1516.
kosik KS, Finch EA. MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neu rites: an inmunocytochemical study of cultured rat cerebrum. J Neurosci 1987;7:3142-31 53.
Lee GT, Cowan NT, kirshner M. The primary structure and heterogeneity from mouse brain. Science 1988;239:285-288.
Lu QT, kanamury RT, Wood JG. Abnormal phosphorylation of Tau Associated with Bovine Brain Microtubules: Activation by Excess ATP and Dephosphorylation. J Neurosci Res 1994;37:759-768.
Himmler A, Drechsel O, Kirschner MWT, Martin Jr.DW. Tau consists of a set of proteins with repeated C-terminal microtubule binding domains and variable N-terminal domains. Mol Cell Biol 1989;9:1389-1396.
Nelson PTT, Stefansson KT, Gulcher J, Saper CB. Molecular evolution of tau protein: implications for Alzheimer’s disease. J Neurochem 1996;67:1622-1632.
Goedert MT, Spillantini MGT, Jakes RT, Rutherford DT, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: secuences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 1989;3:519-526.
Goedert MT, Spillantini MGT, Potier MC, Ulrich JT, Crowther RA. Cloning and sequencing of the cDNA encoding an isoform of microtubuleassociated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 1989;8:393-399.
Chin SS, Goidman JE. Glial inclusions in CNS degenerative diseases. J Neuropathol Exp Neurol 1996;55:499-508.
Gu YT, Qyama FT, Ihara Y. Tau is widely expressed in rat tissue. J Neurochem 1996;67:1235-1244.
Ingelson MT, Vanmechelen E, Lannfelt L. Microtubule-associated protein tau in human fibroblasts with the Swedish Alzheimer mutation. Neurosci Lett 1996;220:9-12.
Vanier MT, Neuville PT, Michalik L, Launay JF. Expression of specific tau exons in normal and tumoral pancreatic acinar cell. J Cell Sci 19981:1419-1432.
Lee G, Neve RL, Kosik KS. The microtubule binding domain of tau protein. Neuron 1989;2:1615-1624.
Goedert M, Jakes R. Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effexts on tubulin polymerization. EMBO J 1990;9:4225-4230.
Kosik KS, Orecchio LO, Bakalis ST, Neve RL. Developmentaly regulated expression of specific tau sequences. Neuron 19892:389-1397.
Avila J. Agregation into fibrillar polymers: tau pathies. FEBS lett 2000;476 89-92.
Janke C, Beck M. Phylogenetic diversity of the expression of the microtubule-associated protein tau: implications for neurodegenerative disorders. Mol Brain Res 1999;68:119-128.
Goedert M. Tau Protein and neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 1993;16:460465.
Jay DT, García JE, Lara JE, Medina MA, Ibarra LM. Determination of a cAMP-Dependent Protein Kinase Phosphorylation Site in the C-Terminal Region of Human Endotheliaí Actin-Binding Protein. Arch Biochem and Biophys 2000;377:80-84.
Jay O, Stracher A. Biochem Biophys Res Comun. 1994;202:764-771.
Jay O, Stracher A. Biochem Biophys Res Comun. 1997;232:555-558.
Maccioni BR. Cdk5. EurJ Biochem 200l;268 1517.
Morgan OO. Cycllin-dependent kinase: engines, clocks, and microprocessors. Annu Rev Cell 0ev 1997;13:262-291.
Alvarez A, Toro R, Cáceres A, Maccioni RB. Inhibition of tau phosphorylation protein kinase Cdk5 prevents beta-amyloid induced neuronal death. FEBS Lett 1999;459: 421426.
Sengupta A, Wu O. Grundke-Iqbal, lqbal K, and Singh T. Alzheimer-Like phosphorylation of human tau by Cdk5. Moll Cell Biochem 1997;167:99-105.
Alvarez G, Muñoz J, Satrustegui J, Avila J, Bogonez E, and Olaz-Nido J. Lithium protecs cultured neurons against beta-amyloid-induced neurodegeneration. FEBS Lett 1999;453:260-264.
Ihara Y, Nikina N, Miura R, Ogawara M. Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s disease. J biochem 1986;99:1807-1810.
Jenkis SM, Zinnerman M, Gamber C, Johnson GVW. Modulation of tau phosphorylation and intracellblar localization by cellular stress. Biochem J 2000;345:263-270.
Goedert M. Pinning down phosphorylated tau. Nature 1999;399:739-740.
Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP. The prolyl isomerase Pin 1 restore the function of Alzheimer-associated phosphorylated tau protein. Nature 1999;399:784-788.
Spillantini MG, Goedert M. Tau protein pathology in neurodegenerative diseases. Trends Neurosci 1998;21:428-433.
Delacourte A. Biochemical and molecular characterization of neurofibrilary degeneration in frontotemporal dementias. Dement Geriatr Cogn Disod 1999;10:75-79.
Mass T, Eidenmuller J, Brandt R. Interaction of Tau with the Neural Membrane Cortex Is Regulated by Phosphorylation at Sites That Are Modified in Paired Helical Filaments. J Biol Chem 2000;275:15733-15740.
Daly LN, Hoffmann R, Otvos LJr, Craik OJ. Role of phosphorylation in the Conformation of t Peptides Implicated in Alzheimer’s Disease. Bioch 2000:39:9039-9046.
Evans OB, Rank KB, Bhattachayra K, Thomsen OR, Gurney ME, Sharma SK. Tau Phosphoryíation at Serme 396 and Serme 404 by Human Recombinant Tau Protein kinase II Inhibits Tau’s Ability to Promote Microtubule Assembly 2000;32:24977-24983.
Reynolds CH, Betts JC, Blackstock WP, Nebreda AR, Andeson BH. Phosphorylation Sites on Tau Identifies by Nanoelectrospay Mass Spectrometry: Differences in Vitro Between the Mitogen-Activated Protein Kinase ERK2. c-Jun N-Terminal Kinase and p38, and Glycogen Synthase Kinase-3b. J Neuroch 2000;74:1587-1595.
Jicha GA, Weaver C, Lane E, Vianna C, Kress Y, Rockwood J, Davies P. cAMP-dependent protein kinase phosphorylations on tau in AD. J Neurosci 1999;19:7486-7494.
Illenberg S, Zheng-Fischhofer O, Preuss U, Stamer K, Baumann K, Trinczek B, Biernat J, Goemann R, Mandelkow EM, Mandelkow E. The endogenous and cell cycle-dependent phosphorylation of tau protein in living cell: lmplications for AD. Mol Biol Cell 1998;9:1495-1512.
Scott CW, Spreen RC, Herman JL, Chow FP, Davison MO, Young J, Caputo CB. Phosphorylation of recombinant tau by cAMP-dependent protein kinase. Identification of phosphorylation sites and effect on microtubule assembly. J Bio Chem 1993;268:1166-1173.
Brandt R, Lee G, Teplow OB, Shaalloway O, Adbel-Ghany M. Oifferential efect of phosphorylation and substrate modulations on tau’s ability to promote microtubule growht and nucleation. J Biol Chem 1994;269:11776-11782.