2014, Número 2
Papel del estrés oxidativo en la patogénesis de la hipertensión arterial
Ponce GY, Ponce GA, Rodríguez LA, Cabrera GK
Idioma: Español
Referencias bibliográficas: 73
Paginas: 181-192
Archivo PDF: 561.97 Kb.
RESUMEN
La producción aumentada de las especies reactivas de oxígeno ha sido implicada con varias enfermedades crónicas, incluida la hipertensión arterial. El estrés oxidativo es, a su vez, causa y consecuencia de esta hipertensión. La mayor fuente de especies reactivas de oxígeno cardiovascular, renal y neural es la enzima NADPH oxidasa. El estrés oxidativo se relaciona con disfunción endotelial, inflamación, hipertrofia, apoptosis, migración celular, fibrosis y angiogénesis; procesos importantes involucrados en la remodelación vascular de la hipertensión arterial. A pesar de la gran cantidad de datos que implican al estrés oxidativo como un factor causante de la hipertensión experimental, los resultados en humanos son menos conclusivos. El objetivo de esta revisión bibliográfica es describir el papel del estrés oxidativo en la fisiopatología de la hipertensión arterial. La mejor comprensión de estos mecanismos permitirá estable-cer una conducta más integral ante esta frecuente enfermedad.
REFERENCIAS (EN ESTE ARTÍCULO)
Kakar P, Lip GY. Towards understanding the aetio-logy and pathophysiology of human hypertension: where are we now? J Hum Hypertens. 2006;20(11): 833-6.
Viel EC, Lemarié CA, Benkirane K, Paradis P, Schi-ffrin EL. Immune regulation and vascular inflam-mation in genetic hypertension. Am J Physiol Heart Circ Physiol. 2010;298(3):938-44.
Vaziri ND, Rodríguez-Iturbe B. Mechanisms of dis-ease: oxidative stress and inflammation in the pa-thogenesis of hypertension. Nat Clin Pract Nephrol. 2006;2(10):582-93.
Kagota S, Tada Y, Kubota Y, Nejime N, Yamaguchi Y, Nakamura K, et al. Peroxynitrite is involved in the dysfunction of vasorelaxation in SHR/NDmcr-cp rats, spontaneously hypertensive obese rats. J Car-diovasc Pharmacol. 2007;50(6): 677-85.
Venereo JR. Daño oxidativo, radicales libres y anti-oxidantes. Rev Cubana Med Milit. 2002;31(2):126-33.
Jerlich A, Pitt AR, Schaur RJ, Spickett CM. Pathway of phospholipid oxidation by HOCl in human LDL detected by LC-MS. Free Radic Biol Med. 2000; 28(5):673-82.
Lavi S, Yang EH, Prasad A, Mathew V, Barsness GW, Rihal CS, et al. The interaction between coronary endothelial dysfunction, local oxidative stress, and endogenous nitric oxide in humans. Hypertension. 2008;51(1):127-33.
Johnson F, Giulivi C. Superoxide dismutases and their impact upon human health. Mol Aspects Med. 2005;26(4-5):340-52.
Mendez JI, Nicholson WJ, Taylor WR. SOD isoforms and signaling in blood vessels: evidence for the importance of ROS compartmentalization. Arterios-cler Thromb Vasc Biol. 2005;25(5):887-8.
10.Touyz RM, Briones AM. Reactive oxygen species and vascular biology: implications in human hyper-tension. Hypertension Res. 2011;34(1):5-14.
11.Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T. Mammalian xanthine oxidoreductase - mechanism of transition from xanthine dehydrogenase to xan-thine oxidase. FEBS J. 2008;275(13):3278-89.
12.Moens AL, Kass DA. Tetrahydrobiopterin and car-diovascular disease. Arterioscler Thromb Vasc Biol. 2006;26(11):2439-44.
13.Liu Y, Zhao H, Li H, Kalyanaraman B, Nicolosi AC, Gutterman DD. Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. Circ Res. 2003;93(9):573-80.
14.DeLano FA, Parks DA, Ruedi JM, Babior BM, Schmid-Schönbein GW. Microvascular display of xanthine oxidase and NADPH oxidase in the spontaneously hypertensive rat. Microcirculation 2006;13(7):551-66.
15.Badimón L, Martínez-González J. Disfunción endo-telial. Rev Esp Cardiol. 2006;6(Supl A):21-30.
16.Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, et al. Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertension. 2005; 45(3):438-44.
17.Hool LC, Corry B. Redox control of calcium chan-nels: from mechanisms to therapeutic opportuni-ties. Antioxid Redox Signal. 2007;9(4):409-35.
18.Yoshioka J, Schreiter ER, Lee RT. Role of thioredoxin in cell growth through interactions with signaling molecules. Antioxid Redox Signal. 2006;8(11):2143-51.
19.Redón J, Oliva MR, Tormos C, Giner V, Chaves J, Ira-di A, et al. Antioxidant activities and oxidative stress byproducts in human hypertension. Hyper-tension. 2003;41(5):1096-101
20.Tanito M, Nakamura H, Kwon YW, Teratani A, Ma-sutani H, Shioji K, et al. Enhanced oxidative stress and impaired thioredoxin expression in sponta-neously hypertensive rats. Antioxid Redox Signal. 2004;6(1):89-97.
21.Touyz RM. Reactive oxygen species, vascular oxi-dative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension. 2004;44(3):248-52.
22.Briones AM, Touyz RM. Oxidative stress and hyper-tension: current concepts. Curr Hypertens Rep. 2010;12(2):135-42.
23.Bengtsson SH, Gulluyan LM, Dusting GJ, Drummond GR. Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology. Clin Exp Pharmacol Physiol. 2003;30(11):849-54.
24.Rodrigo R, Prat H, Passalacqua W, Araya J, Guichard C, Bächler JP. Relationship between oxidative stress and essential hypertension. Hypertens Res. 2007; 30(12):1159-67.
25.Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, et al. Oxidation of tetrahydrobiop-terin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003; 111(8):1201-9.
26.Gavazzi G, Banfi B, Deffert C, Fiette L, Schappi M, Herrmann F, et al. Decreased blood pressure in NOX1-deficient mice. FEBS Lett. 2006;580(2):497-504.
27.Touyz RM, Schiffrin EL. Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxi-dase-sensitive pathways. J Hypertens. 2001;19(7): 1245-54.
28.Ghiadoni L, Magagna A, Versari D, Kardasz I, Huang Y, Taddei S, et al. Different effect of antihyperten-sive drugs on conduit artery endothelial function. Hypertension. 2003;41(6):1281-6.
29.Yoshida J, Yamamoto K, Mano T, Sakata Y, Nishika-wa N, Nishio M, et al. AT1 receptor blocker added to ACE inhibitor provides benefits at advanced stage of hypertensive diastolic heart failure. Hyper-tension. 2004;43(3):686-91.
30.Feairheller DL, Brown MD, Park JY, Brinkley TE, Basu S, Hagberg JM, et al. Exercise training, NADPH oxidase p22phox gene polymorphisms, and hyper-tension. Med Sci Sports Exerc. 2009;41(7):1421-8. 31.Zou MH, Cohen R, Ullrich V. Peroxynitrite and vas-cular endothelial dysfunction in diabetes mellitus. Endothelium. 2004;11(2):89-97. 32.Lassègue B, Clempus RE. Vascular NAD(P)H oxi-dases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 2003; 285(2):277-97.
33.Kuzkaya N, Weissmann N, Harrison DG, Dikalov S. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncou-pling endothelial nitric-oxide synthase. J Biol Chem. 2003;278(25):22546-54.
34.Laursen JB, Somers M, Kurz S, McCann L, Warnholtz A, Freeman BA, et al. Endothelial regulation of va-somotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydro- biopterin. Circulation. 2001;103(9):1282-8.
35.Viel EC, Benkirane K, Javeshghani D, Touyz RM, Schiffrin EL. Xanthine oxidase and mitochondria contribute to vascular superoxide anion generation in DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol. 2008;295(1):281-8.
36.Laakso JT, Teräväinen TL, Martelin E, Vaskonen T, Lapatto R. Renal xanthine oxidoreductase activity during development of hypertension in sponta-neously hypertensive rats. J Hypertens. 2004;22(7): 1333-40.
37.Han D, Antunes F, Canali R, Rettori D, Cadenas E. Voltage-dependent anion channels control the re-lease of the superoxide anion from mitochondria to cytosol. J Biol Chem. 2003;278(8):5557-63.
38.Eto Y, Kang D, Hasegawa E, Takeshige K, Minakami S. Succinate-dependent lipid peroxidation and its prevention by reduced ubiquinone in beef heart submitochondrial particles. Arch Biochem Biophys. 1992;295(1):101-6.
39.Zhou L, Xiang W, Potts J, Floyd M, Sharan C, Yang H, et al. Reduction in extracellular superoxide dis-mutase activity in African-American patients with hypertension. Free Radic Biol Med. 2006;41(9): 1384-91.
40.Michel JB, Feron O, Sase K, Prabhakar P, Michel T. Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase. J Biol Chem. 1997;272(41):25907-12.
41.Simko F, Luptak I, Matuskova J, Krajcirovicova K, Sumbalova Z, Kucharska J, et al. L-arginine fails to protect against myocardial remodelling in L-NAME-induced hypertension. Eur J Clin Invest. 2005;35(6): 362-8.
42.Zhang Y, Hogg N. S-Nitrosothiols: cellular formation and transport. Free Radic Biol Med. 2005;38(7): 831-8.
43.Sládková M, Kojsová S, Jendeková L, Pechánová O. Chronic and acute effects of different antihyperten-sive drugs on femoral artery relaxation of L-NAME hypertensive rats. Physiol Res. 2007;56(Suppl 2):85-91
44.Touyz RM. Reactive oxygen species and angiotensin II signaling in vascular cells – implications in cardio-vascular disease. Braz J Med Biol Res. 2004;37(8): 1263-73.
45.Hitomi H, Kiyomoto H, Nishiyama A. Angiotensin II and oxidative stress. Curr Opin Cardiol. 2007;22(4): 311-5.
46.Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, et al. Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension. 2002;40(4):511-5.
47.Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mecha-nisms. Hypertension. 2003;42(6):1075-81.
48.Pechánová O. Contribution of captopril thiol group to the prevention of spontaneous hypertension. Physiol Res. 2007;56(Suppl 2):41-8.
49.Bitar MS, Wahid S, Mustafa S, Al-Saleh E, Dhaunsi GS, Al-Mulla F. Nitric oxide dynamics and endo-thelial dysfunction in type II model of genetic dia-betes. Eur J Pharmacol. 2005;511(1):53-64.
50.Gomez-Alamillo C, Juncos LA, Cases A, Haas JA, Romero JC. Interactions between vasoconstrictors and vasodilators in regulating hemodynamics of distinct vascular beds. Hypertension. 2003;42(4): 831-6.
51.Djordjevic T, BelAiba RS, Bonello S, Pfeilschifter J, Hess J, Görlach A. Human urotensin II is a novel activator of NADPH oxidase in human pulmonary artery smooth muscle cells. Arterioscler Thromb Vasc Biol. 2005;25(3):519-25.
52.Matsushita M, Shichiri M, Imai T, Iwashina M, Tana-ka H, Takasu N, et al. Co-expression of urotensin II and its receptor (GPR14) in human cardiovascular and renal tissues. J Hypertens. 2001;19(12):2185-90.
53.Jégou S, Cartier D, Dubessy C, Gonzalez BJ, Cha-tenet D, Tostivint H, et al. Localization of the uro-tensin II receptor in the rat central nervous system. J Comp Neurol. 2006;495(1):21-36.
54.Stirrat A, Gallagher M, Douglas SA, Ohlstein EH, Berry C, Kirk A, et al. Potent vasodilator responses to human urotensin-II in human pulmonary and abdominal resistance arteries. Am J Physiol Heart Circ Physiol. 2001;280(2):925-8.
55.Rodrigo R, Passalacqua W, Araya J, Orellana M, Rivera G. Homocysteine and essential hypertension. J Clin Pharmacol. 2003;43(12):1299-306.
56.Harrison DG, Gongora MC. Oxidative stress and hypertension. Med Clin North Am. 2009;93(3):621-35.
57.Rodrigo R, Rivera G. Renal damage mediated by oxidative stress: a hypothesis of protective effects of red wine. Free Radic Biol Med. 2002;33(3):409-22.
58.Zhang C, Hu JJ, Xia M, Boini KM, Brimson C, Li PL. Redox signaling via lipid raft clustering in homo-cysteine-induced injury of podocytes. Biochim Bio-phys Acta. 2010;1803(4):482-91.
59.Piccoli C, Quarato G, D’Aprile A, Montemurno E, Scrima R, Ripoli M, et al. Native LDL-induced oxi-dative stress in human proximal tubular cells: mul-tiple players involved. J Cell Mol Med. 2009;15(2): 375-95.
60.Klahr S. Urinary tract obstruction. Semin Nephrol. 2001;21(2):133-45.
61.Grande MT, Pérez-Barriocanal F, López-Novoa JM. Role of inflammation in tubulo-interstitial damage associated to obstructive nephropathy. J Inflamm (Lond) [Internet]. 2010 [Citado 2013 Abr 13];22(7): 19. Disponible en: http://www.journal-inflammation.com/content/7/1/19
62.Sachse A, Wolf G. Angiotensin II-induced reactive oxygen species and the kidney. J Am Soc Nephrol. 2007;18(9):2439-46.
63.Chung S, Park CW, Shin SJ, Lim JH, Chung HW, Youn DY, et al. Tempol or candesartan prevents high-fat diet-induced hypertension and renal damage in spontaneously hypertensive rats. Nephrol Dial Transplant. 2010;25(2):389-99.
64.Guarnieri G, Zanetti M, Vinci P, Cattin MR, Pirulli A, Barazzoni R. Metabolic syndrome and chronic kid-ney disease. J Ren Nutr. 2010;20(Suppl 5):19-23.
65.Malyszko J. Mechanism of endothelial dysfunction in chronic kidney disease. Clin Chim Acta. 2010; 411(19-20):1412-20.
66.Costa-Hong V, Bortolotto LA, Jorgetti V, Consolim-Colombo F, Krieger EM, Lima JJ. Oxidative stress and endothelial dysfunction in chronic kidney dis-ease. Arq Bras Cardiol. 2009;92(5):381-6.
67.Zoccali C, Bode-Böger S, Mallamaci F, Benedetto F, Tripepi G, Malatino L, et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospec-tive study. Lancet 2001;358(9299):2113-7.
68.Nanayakkara PW, Teerlink T, Stehouwer CD, Allajar D, Spijkerman A, Schalkwijk C, et al. Plasma asymmetric dimethylarginine (ADMA) concentration is independently associated with carotid intima-media thickness and plasma soluble vascular cell adhesión molecule-1 (sVCAM-1) concentration in patients with mild-to-moderate renal failure. Kid-ney Int. 2005;68(5):2230-6.
69.Grassi G. Assessment of sympathetic cardiovascular drive in human hypertension: achievements and perspectives. Hypertension. 2009;54(4):690-7.
70.Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335-46.
71.Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation. 2004; 109(19):2357-62.
72.Hirooka Y, Sagara Y, Kishi T, Sunagawa K. Oxidative stress and central cardiovascular regulation. Patho-genesis of hypertension and therapeutic aspects. Circ J. 2010;74(5):827-35.
73.Sved AF, Ito S, Sved JC. Brainstem mechanisms of hypertension: role of the rostral ventrolateral medulla. Curr Hypertens Rep. 2003;5(3):262-8.
74.Oliveira-Sales EB, Nishi EE, Carillo BA, Boim MA, Dolnikoff MS, Bergamaschi CT, et al. Oxidative stress in the sympathetic premotor neurons contri-butes to sympathetic activation in renovascular hypertension. Am J Hypertens. 2009;22(5):484-92.
75.Zimmerman MC, Lazartigues E, Sharma RV, Davisson RL. Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res. 2004;95(2):210-6.