2015, Número 1
<< Anterior Siguiente >>
Acta Pediatr Mex 2015; 36 (1)
Resonancia magnética nuclear de encéfalo en pacientes con fenilcetonuria diagnosticada tardíamente
Jiménez-Pérez MO, Gómez-Garza G, Ruiz-García M, Fernández-Lainez C, Ibarra-González I, Vela-Amieva M
Idioma: Español
Referencias bibliográficas: 30
Paginas: 9-17
Archivo PDF: 722.98 Kb.
RESUMEN
Antecedentes: la fenilcetonuria clásica es una encefalopatía genética
caracterizada por una inhabilidad de los individuos para metabolizar la
fenilalanina, por lo que su concentración plasmática se eleva a niveles
tóxicos. Clínicamente se manifiesta como irritabilidad, alteración del
sueño, indiferencia al medio, crisis convulsivas, retraso del neurodesarrollo,
conducta autista, agresividad y discapacidad intelectual.
Objetivo: describir los hallazgos y cuantificar el coeficiente de difusión
aparente en los estudios de imagen de resonancia magnética de cráneo,
de pacientes con fenilcetonuria clásica diagnosticada tardíamente en
el Instituto Nacional de Pediatría (México).
Materiales y métodos: análisis retrospectivo de imágenes cerebrales
obtenidas por resonancia magnética en pacientes con fenilcetonuria
clásica. Se utilizó un magneto Signa Excite de 1.5 teslas con antena
cerebral de ocho canales de arreglo en fase. Se midió el coeficiente de
difusión aparente en la estación de trabajo Advantage Workstation 4.2p.
Resultados: en los pacientes se observaron alteraciones en las sustancias
blanca, gris, o ambas. En la sustancia blanca las lesiones hiperintensas
en el área peritrigonal fueron las más frecuentes; se encontraron alteraciones
bilaterales en la sustancia blanca frontal, temporal, occipital,
subcortical y periventricular. Se observó disminución del coeficiente
de difusión aparente en la sustancia blanca peritrigonal, occipital,
cuerpo calloso, ganglios basales y cerebelo. Un paciente tenía dos
quistes aracnoideos.
Conclusión: todos los pacientes estudiados tuvieron las anormalidades
características de la enfermedad en las imágenes de resonancia
magnética. Los mecanismos causantes de las lesiones cerebrales en
la fenilcetonuria, su distribución espacial y su evolución son poco
conocidos y requieren de investigaciones posteriores.
REFERENCIAS (EN ESTE ARTÍCULO)
Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet 2010;376:1417-27.
Scriver CR, Kaufman S. Hyperphenylalaninemia: Phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Valle D, eds. The metabolic and molecular basis of inherited disease. 8th edn. New York,NY: McGraw-Hill Inc, 2001:1667–724.
Huttenlocher PR. The neuropathology of phenylketonuria: human and animal studies. Eur J Pediatr 2000;159(Suppl 2):S102-6.
Pérez-Dueñas B, Pujol J, Soriano-Mas C, Ortiz H, Artuch R, Vilaseca MA, et al. Global and regional volumen changes in the brains of patients with phenylketonuria. Neurology 2006;66:1074-1078.
Pfaendner NH, Reuner G, Pietz J, Jost G, Rating D, Magnotta VA, et al. MR imaging-based volumetry in patients with early-treated phenylketonuria. Am J Neuroradiol 2005;26:1681-5.
Anderson PJ, Leuzzi V. White matter pathology in phenylketonuria. Mol Genet Metab 2010;99(Suppl 1):S3-9.
Følling A. ÜberAusscheidung von Phenylbrenztraubensäure in den Harnals Stoffwechselanomalie in VerbindungmitImbezillität. Hoppe-Seyler’s Z Physiol Chem 1934;227:169-76.
Aragón MC, Giménez C, Valdivieso F. Inhibition by Lphenylalanine of tyrosine transport by synaptosomal plasmamembrane vesicles: implications in the pathogenesis of phenylketonuria. J Neurochem 1982;39:1185-7.
Herrero E, Aragón MC, Giménez C, Valdivieso F. Tryptophan transport into plasma membrane vesicles derived from rat brain synaptosomes. J Neurochem 1983;40:332-7.
van Spronsen FJ, Hoeksma M, Reijngoud DJ. Brain dysfunction in phenylketonuria: is phenylalanine toxicity the only possible cause? J Inherit Metab Dis 2009;32:46-51.
Bauman ML, Kemper TL. Morphologic and histoanatomic observations of the brain in untreated humanphenylketonuria. Acta Neuropathol 1982;58:55-63.
Cordero ME, Trejo M, Colombo M, Aranda V. Histological maturation of the neocortex in phenylketonuricrats. Early Hum Dev 1983;8:157-73.
Gazit V, Ben-Abraham R, Rudin M, Katz Y. Glucose-lowering effect of beta-phenylpyruvate in neonatal mice: a possible mechanism for phenylketonuria-related neurodegenerative changes. Brain Res Dev Brain Res 2003;141:137-40.
Hörster F, Schwab MA, Sauer SW, Pietz J, Hoffmann GF, Okun JG, et al. Phenylalanine reduces synaptic density in mixed cortical cultures from mice. Pediatr Res 2006;59:544- 8.
Burri R, Steffen C, Stieger S, Brodbeck U, Colombo JP, Herschkowitz N. Reduced myelinogenesis and recovery in hyperphenylalaninemic rats. Correlation between brain phenylalanine levels, characteristic brain enzymes for myelination, and brain development. Mol Chem Neuropathol 1990;13:57-69.
Wyse AT, Sarkis JJ, Cunha-Filho JS, Teixeira MV, Schetinger MR, Wajner M et al. Effect of phenylalanine and its metabolites on ATP diphosphohydrolase activity in synaptosomes from rat cerebral cortex. Neurochem Res 1994;19:1175-80.
Martínez-Cruz F, Pozo D, Osuna C, Espinar A, Marchante C, Guerrero JM. Oxidative stress induced by phenylketonuria in the rat: Prevention by melatonin, vitamin E, and vitamin C.J Neurosci Res 2002;69:550-8.
Sitta A, Barschak AG, Deon M, Terroso T, Pires R, Giugliani R, et al. Investigation of oxidative stress parameters in treated phenylketonuric patients. Metab Brain Dis 2006;21:287-96.
Sitta A, Manfredini V, Biasi L, Treméa R, Schwartz IV, Wajner M, et al. Evidence that DNA damage is associated to phenylalanine blood levels in leukocytes from phenylketonuric patients. Mutat Res 2009;679:13-6.
Ribas GS, Sitta A, Wajner M, Vargas CR. Oxidative stress in phenylketonuria: what is the evidence? Cell Mol Neurobiol 2011;31:653-62.
Simon KR, Dos Santos RM, Scaini G, Leffa DD, Damiani AP, Furlanetto CB, et al. DNA damage induced by phenylalanine and its analogue p-chlorophenylalanine in blood and brain of rats subjected to a model of hyperphenylalaninemia. Biochem Cell Biol 2013;91:319-24.
Huang X, Lu Z, Lv Z, Yu T, Yang P, Shen Y, et al. The Fas/Fas ligand death receptor pathway contributes to phenylalanine-inducedapoptosis in cortical neurons. PLoS One. 2013;8(8):e71553. doi: 10.1371/journal.pone.0071553.
Medici C, Varacchi C, González G. Unusual case of phenylketonuria with atypical brain magnetic resonance imaging findings. J Child Neurol 2012;28:1496-1499.
Cleary MA, Walter JH, Wraith JE, Jenkins JP, Alani SM, Tyler K, et al. Magnetic resonance imaging of the brain in phenylketonuria. Lancet 1994;344:87-90.
Kono K, Okano Y, Nakayama K, Hase Y, Minamikawa S, Ozawa N, et al. Diffusion-weighted MR imaging in patients with phenylketonuria: relationship between serum phenylalanine levels and ADC values in cerebral white matter. Radiology 2005;236:630-636.
Manara R, Burlina AP, Citton V, Ermani M, Vespignani F, Carollo C, et al. Brain MRI diffusion-weighted imaging in patients with classical phenylketonuria. Neuroradiology 2009;51:803-12.
Bodner KE, Aldridge K, Moffitt AJ, Peck D, White DA, Christ SE. A volumetric study of basal ganglia structures in individuals with early-treated phenylketonuria. Mol Genet Metab 2012;107:302-7.
Phillips MD, McGraw P, Lowe MJ, Mathews VP, Hainline BE. Diffusion-weighted imaging of white matter abnormalities in patients with phenylketonuria. Am J Neuroradiol 2001;22:1583-6.
Bahn MM, Kido DK, Lin W, Pearlman AL. Brain magnetic resonance diffusion abnormalities in Creutzfeldt-Jakob disease. Arch Neurol 1997;54:1411-5.
Pradilla G, Jallo G. Arachnoid cysts: case series and review of the literature. Neurosurg Focus 2007;22(2):E7.