2014, Número 5
<< Anterior Siguiente >>
Rev Invest Clin 2014; 66 (5)
La microbiota como agente inductor de la obesidad, la inflamación sistémica y la resistencia a la insulina
Escobedo G, López-Ortiz E, Torres-Castro I
Idioma: Ingles.
Referencias bibliográficas: 60
Paginas: 450-459
Archivo PDF: 211.29 Kb.
RESUMEN
La obesidad se asocia con un estado inflamatorio sistémico
que contribuye al desarrollo de resistencia a la insulina. Sin
embargo, los factores involucrados en la relación del fenotipo
obesogénico con el establecimiento de la respuesta inflamatoria
y la pérdida de la sensibilidad a la insulina todavía
no han sido identificados completamente. La microbiota está
constituida por alrededor de 10
13 y 10
14 bacterias que habitan
el intestino humano, agrupadas en cerca de 1,000 especies
bacterianas distintas. Numerosos estudios sugieren que
las alteraciones en las poblaciones bacterianas intestinales
podrían conducir a mayor propensión a la obesidad, el desarrollo
de un estado de inflamación sistémica y la disfunción
metabólica. En esta revisión se exponen los principales filabacterianos
asociados con el fenotipo obesogénico, así como
su posible papel en el aumento de la permeabilidad intestinal
y la generación de la endotoxemia por el lipopolisacárido.
Además, discutimos la participación de la disbiosis
intestinal en la activación de macrófagos inflamatorios, con
capacidad de infiltrar el tejido adiposo visceral induciendo
pérdida de la sensibilidad a la insulina. Finalmente, se revisan
los aparentes beneficios del uso de prebióticos y probióticos,
en el tratamiento de la inflamación sistémica y la
disfunción metabólica. En un futuro esta información podría
ser útil en el desarrollo de estrategias terapéuticas encaminadas
al control de la obesidad y la resistencia a la
insulina, a través del restablecimiento del balance poblacional
de la microbiota.
REFERENCIAS (EN ESTE ARTÍCULO)
Johnson AR, Milner JJ, Makowski L. The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev 2012; 249: 218-38.
Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101: 15718-23.
Rajilic-Stojanovic M, Smidt H, de Vos WM. Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 2007; 9: 2125-36.
Zhu B, Wang X, Li L. Human gut microbiome: the second genome of human body. Protein Cell 2010; 1: 718-25.
Favier CF, Vaughan EE, De Vos WM, Akkermans AD. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 2002; 68: 219-26.
Morgan XC, Huttenhower C. Meta’omic analytic techniques for studying the intestinal microbiome. Gastroenterology 2014; 146: 1437-48.
Peris-Bondia F, Latorre A, Artacho A, Moya A, D’Auria G. The active human gut microbiota differs from the total microbiota. PLoS One 2011; 6: e22448.
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 2005; 102: 11070-5.
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, et al. A core gut microbiome in obese and lean twins. Nature 2009; 457: 480-4.
Sweeney TE, Morton JM. The human gut microbiome: a review of the effect of obesity and surgically induced weight loss. JAMA Surg 2013; 148: 563-9.
Zoetendal EG, Akkermans AD, de Vos WM. The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health 2001; 13: 129-34
Tims S, Derom C, Jonkers DM, Vlietinck R, Saris WH, Kleerebezem M, de Vos WM, et al. Microbiota conservation and BMI signatures in adult monozygotic twins. ISME J 2013; 7: 707-17.
Simões CD, Maukonen J, Kaprio J, Rissanen A, Pietiläinen KH, Saarela M. Habitual dietary intake is associated with stool microbiota composition in monozygotic twins. J Nutr 2013; 143: 417-23.
Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 2009; 1: 6ra14.
Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, Knight R, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 2009; 137: 1716-24.
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444: 1022-3.
Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstome AM, Louis P, Flint HJ. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes 2008; 32: 1720-4.
Matsumoto M, Inoue R, Tsukahara T, Ushida K, Chiji H, Matsubara N, Hara H. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem 2008; 72: 572-6.
Tan X, Saarinen A, Mikkola TM, Tenhunen J, Martinmäki S, Rahikainen A, Cheng S, et al. Effects of exercise and diet interventions on obesity-related sleep disorders in men: study protocol for a randomized controlled trial. Trials 2013; 14: 235.
Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 2007; 104: 979-84.
Cornall LM, Mathai ML, Hryciw DH, McAinch AJ. The therapeutic potential of GPR43: a novel role in modulating metabolic health. Cell Mol Life Sci 2013; 70: 4759-70.
Nøhr MK, Pedersen MH, Gille A, Egerod KL, Engelstoft MS, Husted AS, Sichlau RM, et al. GPR41/FFAR3 and GPR43/ FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs. FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 2013; 154: 3552-64.
Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M. Short-chain fatty acids stimulate leptin production in adipocytes through the G proteincoupled receptor GPR41. Proc Natl Acad Sci USA 2004; 101: 1045-50.
Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, et al. The gut microbiota suppresses insulinmediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 2013; 4: 1829.
Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 2002; 418: 650-4.
Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 2012; 46: 261-74.
Parnell JA, Reimer RA. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats. Br J Nutr 2012; 107: 601- 13.
Angelakis E, Million M, Kankoe S, Lagier JC, Armougom F, Giogi R, Raoult D. Abnormal weight gain and gut microbiota modifications are side effects of long-term doxycycline and hydroxycholroquine treatment. Antimicrob Agents Chemother 2014; 58: 3342-7.
Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57: 1470-81.
Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58: 1091-103.
Katayama T, Kanno M, Morita N, Hori T, Narihiro T, Mitani Y, Kamagata Y. An oleaginous bacterium that intrinsically accumulates long-chain free Fatty acids in its cytoplasm. Appl Environ Microbiol 2014; 80: 1126-31.
Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol 2008; 8: 923-34.
Youssef-Elabd EM, McGee KC, Tripathi G, et al. Acute and chronic saturated fatty acid treatment as a key instigator of the TLR-mediated inflammatory response in human adipose. J Nutr Biochem 2012; 23: 39-50.
O’Neill LAJ, Golenback D, Bowie AG. The history of Toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013; 13: 453-60.
Van Greevenbroek MM, Schalkwijk CG, Stehouwer CD. Obesity- associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth J Med 2013; 71: 174-87.
Wadström T, Rydberg J, Rozalska B, Lelwala-Guruge J. Intravenous Helicobacter pylori induces low levels of TNF-alpha and IL-1 alpha in a murine model. APMIS 1994; 102: 49-52.
Feng D, Tang Y, Kwon H, et al. High-fat diet-induced adipocyte cell death occurs through a cyclophilin D intrinsic signaling pathway independent of adipose tissue inflammation. Diabetes 2011; 60: 2134-43.
Kitamura H, Kimura S, Shimamoto Y, et al. Ubiquitin-specific protease 2-69 in macrophages potentially modulates metainflammation. FASEB J 2013; 27: 4940-53.
Rahat-Rozenbloom S, Fernandes J, Gloor GB, Wolever TM. Evidence for greater production of colonic short chain fatty acids in overweight than lean humans. Int J Obes (Lond) 2014; Doi: 10.1038/ijo.2014.46.
Murano I, Barbatelli G, Parisani V, Latini C, Muzzonigro G, et al. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res 2008; 49: 1562-8.
Yoshizaki T, Kusunoki C, Kondo M, et al. Autophagy regulates inflammation in adipocytes. Biochem Biophys Res Commun 2012; 417: 352-7.
Chatzigeorgiou A, Karalis KP, Bornstein SR, Chavakis T. Lymphocytes in obesity-related adipose tissue inflammation. Diabetologia 2012; 55: 2583-92.
Makki K, Froguel P, Wolowczuk I. Adipose Tissue in Obesity- Related Inflammation and Insulin Resistance: Cells, Cytokines, and Chemokines. ISRN Inflamm 2013; 22: 139239.
Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11: 98-107.
Van Greevenbroek MM, Schalkwijk CG, Stehouwer CD. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth J Med 2013; 71: 174-87.
Suárez-Álvarez K, Solís-Lozano L, Leon-Cabrera S, et al. Serum IL-12 is increased in Mexican obese subjects and associated with low-grade inflammation and obesity-related parameters. Mediators Inflamm 2013; 2013: 967067.
Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-a: direct role in obesity-linked insulin resistance. Science 1993; 259: 87-91.
Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, Bindels LB, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013; 62: 1112-21.
Delzenne NM, Neyrinck AM, Bäckhed F, Cani PD. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 2011; 7: 639-46.
Gäbele E, Dostert K, Hofmann C, Wiest R, Schölmerich J, Hellerbrand C, Obermeier F. DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. J Hepatol 2011; 55: 1391-9.
Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, Possemiers S, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 2011; 60: 2775-86.
Piche T, des Varannes SB, Sacher-Huvelin S, Holst JJ, Cuber JC, Galmiche JP. Colonic fermentation influences lower esophageal sphincter function in gastroesophageal reflux disease. Gastroenterology 2003; 124: 894-902.
Perrin P, Pierre F, Patry Y, Champ M, Berreur M, Pradal G, Bornet F, et al. Only fibres promoting a stable butyrate producing colonic ecosystem decrease the rate of aberrant crypt foci in rats. Gut 2001; 48: 53-61.
Boutron-Ruault MC, Marteau P, Lavergne-Slove A, Myara A, Gerhardt MF, Franchisseur C, Bornet F; Eripolyp Study Group. Effects of a 3-mo consumption of short-chain fructo-oligosaccharides on parameters of colorectal carcinogenesis in patients with or without small or large colorectal adenomas. Nutr Cancer 2005; 53: 160-8.
Takemura N, Okubo T, Sonoyama K. Lactobacillus plantarum strain No. 14 reduces adipocyte size in mice fed high-fat diet. Exp Biol Med (Maywood) 2010; 235: 849-56.
Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, van-Hylckama Vlieg JE, et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic synfrome in high fat diet-fed mice. ISME J 2014; Doi: 10.1038/ismej. 2014.99.
Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, Okano M, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 2010; 64: 636-43.
Andreasen AS, Larsen N, Pedersen-Skovsgaard T, Berg RM, Møller K, Svendsen KD, Jakobsen M, et al. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br J Nutr 2010; 104: 1831-8.
Imani Fooladi AA, Mahmoodzadeh Hosseini H, Nourani MR, Khani S, Alavian SM. Probiotic as a novel treatment strategy against liver disease. Hepat Mon 2013; 13: e7521.
Everard A, Matamoros S, Geurts L, Delzenne NM, Cani PD. Saccharomyces boulardii administration chenges gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. MBio 2014; 5: Doi: 10.1128/mBio.01011-14.