2014, Número 2
<< Anterior Siguiente >>
Rev Mex Med Repro 2014; 6.7 (2)
Estudio piloto para la determinación de concentraciones del anión superóxido (O2-) en semen y su correlación con parámetros de espermatobioscopia
Góngora-Rodríguez A, Gosálvez J, González-Cortés C, Capilla-González G, Parra-Forero LY
Idioma: Español
Referencias bibliográficas: 46
Paginas: 75-82
Archivo PDF: 576.34 Kb.
RESUMEN
Antecedentes: durante varios años se ha estudiado la incidencia de las
especies reactivas de oxígeno en la calidad espermática, se necesita un
sinergismo entre éstos para procesos determinantes, como la fecundación
y la capacitación espermática.
Objetivo: evaluar la aplicación del equipo Oxisperm
® en muestras de
eyaculado de pacientes y donadores de un centro de reproducción
asistida y correlacionar sus resultados con parámetros de espermatobioscopia
básica.
Material y método: estudio observacional y descriptivo, en el que se
aplicó el equipo Oxisperm
®, basado en la reacción colorimétrica del
azul de nitritotetrazolio (NBT), en 100 muestras de eyaculados escogidos
al azar de donadores y pacientes de un centro privado de reproducción,
se evaluaron según los parámetros de la Organización Mundial de la
Salud (2010). Los datos se analizaron con SPSS 11.0.
Resultados: hubo diferencias significativas (p‹0.01). Los niveles de
concentración variaron entre las muestras realizadas: N1 34%, N2
36% y N3 30%. Hubo correlación negativa entre la motilidad y la
concentración de anión superóxido (r=-0.465, p=0.0007).
Conclusiones: el equipo Oxisperm
® mostró diferencias en la concentración
de anión superóxido y se correlacionó con parámetros relacionados
con la calidad del eyaculado. Se necesitan estudios con una
población más grande, porque cerca de 64% de las muestras pertenecía
a pacientes fértiles sin alteraciones espermáticas evidentes. El equipo
Oxisperm
® es una prueba rápida y sencilla que puede realizarse en
cualquier laboratorio de reproducción asistida.
REFERENCIAS (EN ESTE ARTÍCULO)
Dumont M, Flint Beal M. Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic Biol Med 2011;51:1014-1026.
Parajuli B, Sonobe Y, Horiuchi H, Takeuchi H, et al. Oligomeric amyloid β induces IL-1β processing via production of ROS: implication in Alzheimer’s disease. Cell Death & Disease 2013;4:975.
Hur J, Sullivan KA, Schuyler AD, Yu Hong, et al. Literaturebased discovery of diabetes- and ROS-related targets. BMC Med Genomics 2010;3:49.
Graham S, Gorin Y, Abboud HE, Ding M, et al. Abundance of TRPC6 protein in glomerular mesangial cells is decreased by ROS and PKC in diabetes. Am J Physiol-Cell Physiol 2011;301:304-315.
Datta S, Kundu S, Ghosh P, De S, et al. Correlation of oxidant status with oxidative tissue damage in patients with rheumatoid arthritis. Clin Rheumatol 2014;33:1557-1564. 81 Góngora-Rodríguez A y col. Determinación de concentraciones de O2- en semen
Pizzolla A, Gelderman KA, Hultqvist M, Vestberg M, et al. CD68-expressing cells can prime T cells and initiate autoimmune arthritis in the absence of reactive oxygen species. Eur J Immunol 2011;41:403-412.
Sugamura K, Keaney Jr JF. Reactive oxygen species in cardiovascular disease. Free Rad Biol Med 2011;51:978-992.
Ortega A, Córdova A, Hicks JJ, Olivares-Corichi IM, et al. Peroxidación lipídica y antioxidantes en la preservación de semen. Una revisión. INCI 2003;28:699-704.
Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biol Med 2010;48:749- 762.
Taha EA, Ezz-Aldin AM, Sayed SK, Ghandour NM, Mostafa T. Smoking influence on sperm vitality, DNA fragmentation, reactive oxygen species and zinc in oligoasthenoteratozoospermic men with varicocele. Andrologia 2013; 46:687-691.
Guthrie HD, Welch GR. Effects of reactive oxygen species on sperm function. Theriogenology 2012;78:1700-1708.
de Lamirande Eve, Jiang H, Zini A, Kodama H, Gagnon C. Reactive oxygen species and sperm physiology. Rev Reprod 1997;2:48-54.
Garratt M, Bathgate R, de Graaf SP, Brooks RC. Copper-zinc superoxide dismutase deficiency impairs sperm motility and in vivo fertility. Reproduction 2013;146:297-304.
Buffone MG, Calamera JC, Brugo-Olmedo S, De Vincentiis S, et al. Superoxide dismutase content in sperm correlates with motility recovery after thawing of cryopreserved human spermatozoa. Fertil Steril 2012;97:293-298.
Moubasher AE, El Din AME, Ali ME, El-sherif WT, Gaber HD. Catalase improves motility, vitality and DNA integrity of cryopreserved human spermatozoa. Andrologia 2013;45:135-139.
Puglisi R, Maccari I, Pipolo S, Conrad M, et al. The nuclear form of glutathione peroxidase 4 is associated with sperm nuclear matrix and is required for proper paternal chromatin decondensation at fertilization. J Cell Physiol 2012;227:1420-1427.
Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. Biochimica et Biophysica Acta (BBA)-General Subjects 2013;1830:3289-3303.
Zappa F, Ward T, Pedrinis E, Butler J, McGown A.Cytology & Histology.
Gutiérrez Mosquera A, Pino Benítez N, Cuesta Lemos JA. Actividad antioxidante y contenido total de fenoles de varios extractos etanólicos de plantas medicinales. Revista Investigación, Biodiversidad y Desarrollo 2011;30.
Andrade ER, Melo-Sterza FA, Seneda MM, Alfieri AA. Consequências da produção das espécies reativas de oxigênio na reprodução e principais mecanismos antioxidantes. Rev Bras Reprod Anim 2010;34:79-85.
Talevi R, Barbato V, Fiorentino I, Braun S. Protective effects of in vitro treatment with zinc, d-aspartate and coenzyme q10 on human sperm motility, lipid peroxidation and DNA fragmentation. Reprod Biol Endocrinol 2013;11:81.
Menezo Y, Evenson D, Cohen M, Dale B. Effect of antioxidants on sperm genetic damage. In: Genetic Damage in Human Spermatozoa. Springer, 2014.173-189.
Moslemi MK, Tavanbakhsh S. Selenium–vitamin E supplementation in infertile men: effects on semen parameters and pregnancy rate. Int J Gen Med 2011;4:99-104.
Tosic J, Walton A. Formation of hydrogen peroxide by spermatozoa and its inhibitory effect on respiration. Nature 1946;158:485.
Donà G, Fiore C, Tibaldi E, Frezzato F, et al. Endogenous reactive oxygen species content and modulation of tyrosine phosphorylation during sperm capacitation. Int J Androl 2011;34:411-419.
Ben WX, Fu MT, Mao LK, Ming ZW, Xiong WW. Effects of various concentrations of native seminal plasma in cryoprotectant on viability of human sperm. Arch Androl 1997;39:211-216.
de Andrade AFC, Gilli Zaffalon F, Carvalho Celeghini EC, Nascimento J, et al. Post-thaw addition of seminal plasma reduces tyrosine phosphorylation on the surface of cryopreserved equine sperm, but does not reduce lipid peroxidation. Theriogenology 2012;77:1866-1872.
Marklund St, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974;47:469-474.
Marmunti M, Gutiérrez AM, Gavazza M, Williams S, Palacios A. Susceptibility to peroxidation and fatty acid composition of fresh boar semen obtained from different hog farms. Revista Veterinaria 2012;23.
Bailly C, Kranner I. Analyses of reactive oxygen species and antioxidants in relation to seed longevity and germination. In: Seed Dormancy 2011;343-367.
Hawkins CL, Davies MJ. Detection and characterisation of radicals in biological materials using EPR methodology. Biochim Biophys Acta 2014;1840:708-721.
Ronit L, Ankri R, Sinyakov M, Eichler M, et al. The plasma membrane is involved in the visible light-tissue interaction. Photomed Laser Surg 2012;30:14-19.
Domínguez‐Rebolledo AE, Martínez‐Pastor F, Bisbal AF, Ros‐Santaella JL, et al. Response of thawed epididymal red deer spermatozoa to increasing concentrations of hydrogen peroxide, and importance of individual male variability. Reprod Domest Anim 2011;46:393-403.
Gvozdjakova A, Kucharska J, Lipkova J, Bartolcicova B. Importance of the assessment of coenzyme Q10, alphatocopherol and oxidative stress for the diagnosis and therapy of infertility in men. Bratisl Lek Listy 2012;114:607-609.
Laguerre M, Decker EA, Lecomte J, Villeneuve P. Methods for evaluating the potency and efficacy of antioxidants. Current Opinion in Clinical Nutrition & Metabolic Care 2010;13:518-525. 82 Revista Mexicana de Medicina de la Reproducción Volumen 7, Núm. 2, octubre-diciembre 2014
Krumova K, Cosa G. Fluorogenic probes for imaging reactive oxygen species. Photochemistry 2013;41:279.
Aitken RJ, De Luliis GN, Baker MA. Direct methods for the detection of reactive oxygen species in human semen samples. In: Studies on Men’s Health and Fertility. Springer, 2012:275-299. 47. Nabil A, Tamer S, Paasch U, Agarwal A. The relationship between human sperm apoptosis, morphology and the sperm deformity index. Human Reproduction 2007;22:1413-1419.
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROSinduced ROS release: an update and review. Biochim Biophys Acta 2006;1757:509-517.
Urata K, Narahara H, Tanaka Y, Egashira Toru, et al. Effect of endotoxin-induced reactive oxygen species on sperm motility. Fertil Steril 2001;76:163-166.
Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab 2008;93:3199-3207.
Plante M, De Lamirande E, Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril 1994;62:387-393.
Ford WCL. Regulation of sperm function by reactive oxygen species. Human Reprod Update 2004;10:387-399.
Henkel R. ROS and semen quality. In: Studies on Men’s Health and Fertility. Springer, 2012;301-323.
Wojciech L, Skrzydlewska E. DNA damage caused by lipid peroxidation products. Cell Mol Biol Lett 2003;8:391- 413.
May-Panloup P, Chrétien MF, Savagner F, Vasseur C, et al. Increased sperm mitochondrial DNA content in male infertility. Hum Reprod 2003;18:550-556.
El-Taieb M, Herwig R, Nada EA, Greilberger J, Marberger M. Oxidative stress and epididymal sperm transport, motility and morphological defects. Eur J Obstet Gynecol Reprod Biol 2009;144:199-203.