2014, Número 1
Siguiente >>
Rev Cub Gen 2014; 8 (1)
Superóxido dismutasa citosólica y enfermedades genéticas
Castillo CY, Riverón FG
Idioma: Español
Referencias bibliográficas: 30
Paginas: 5-11
Archivo PDF: 308.25 Kb.
RESUMEN
Los organismos a partir de su exposición a la atmósfera rica en oxígeno, desarrollaron sistemas de defensa antioxidantes capaces de contrarrestar la toxicidad que pueden generar las especies reactivas del oxígeno. Los componentes del sistema de defensa antioxidante, son muy diversos, los más estudiados son los llamados antioxidantes primarios, que son los que eliminan o previenen la formación de estas especies reactivas. En este grupo se encuentra la familia de las superóxido dismutasas, las que catalizan con una elevada eficiencia, la reacción de dismutación del anión superóxido, y constituyen las únicas enzimas conocidas que actúan sobre un radical. Dentro de este grupo, la superóxido dismutasa 1 forma parte de la primera línea de defensa antioxidante a nivel citosólico, y tanto el aumento como la disminución de la actividad de esta enzima resultan perjudiciales para el organismo. En esta revisión se ofrece una actualización sobre los estudios realizados en relación con la superóxido dismutasa 1 y su vinculación en la patogénesis de algunas enfermedades genéticas.
REFERENCIAS (EN ESTE ARTÍCULO)
Dröge W. Free Radicals in the Physiological Control of Cell Function. Physiol Rev. 2002;82:47–95.1.
Jones DP. Redefining Oxidative Stress. Antioxidants&RedoxSignaling 2006; 8:1865-79.
Rani PK,Meena U,KarthikeyanJ. Evaluation of antioxidant properties of berries. Indian Journal of Clinical Biochemistry. 2004;19(2):103-10.
Berg JM,Tymoczko JL, Stryer L. Biochemistry. 6th ed. New York: W.H. Freeman and company; 2006.
Teoh-Fitzgerald M LT, Fitzgerald MP, Jensen TJ, Futscher BW, Domann FE. Genetic and Epigenetic Inactivation of Extracellular Superoxide Dismutase Promotes an Invasive Phenotype in Human Lung Cancer by Disrupting ECM Homeostasis. Molecular Cancer Reserch. 2012;10(40).
Milani P, Gagliardi G, Cova E, Cereda C. SOD1 Transcriptional and Posttranscriptional Regulation and Its Potential Implications in ALS. Neurology Research International. 2011; 2011:1-9.
Tamari Y, Nawata H, Inoue E, Yoshimura A, Yoshii H, Kashino G, Seki M, et al. Protective roles of ascorbic acid in oxidative stress induced by depletion of superoxide dismutase in vertebrate cells. Free Radical Research. 2013;47(1):1-7.
Nikolić-Kokić A, Blagojević D, Spasić MB. Complexity of free radical metabolism in human erythrocytes. J Med Biochem. 2010;29:189-95.
Iuchi Y. Anemia Caused by Oxidative Stress, Anemia, Dr. Donald Silverberg (Ed.), ISBN: 978-953-51-0138-3. DOI: 10.5772/31404, 2012. URl disponible en: http://www.intechopen.com/books/anemia/anemia-caused-byoxidative-stress.
Marucci G,Morandi L, Bartolomei I, Salvi F, Pession A, Righi A, et al. Amyotrophic lateral sclerosis with mutation of the Cu/Zn superoxide dismutase gene (SOD1) in a patient with Down syndrome. Neuromuscular Disorders. 2007; 17:673–6.
Choi C, Rees DH, Weintraub TS, Levey IA, Chin LS, Li L. Oxidative modification and aggregation of Cu,Zn-Superoxide Dismutase Associated with Alzheimer and Parkinson Diseases. The Journal of Biological Chemistry. 2005;280:11648-55.
Wilcox CK, Zhou L, Jordon KJ, Huang Y, Yu Y, Redler LR, et al. Modifications of Superoxide Dismutase (SOD1) in Human Erythrocytes a possible role in Amyotrophic Lateral Sclerosis. The Journal of Biological Chemistry. 2009 May 15;284(20):13940-7.
Muyderman H, Hutson PG, Matusica D, Rogers ML, Rush RA. The human G93A-superoxide dismutase-1 mutation, mitochondrial glutathione and apoptotic cell death. Neurochemical Research. 2009;34(10):1847-56.
Yamakawa K, Shukkur AE, Shimohata A, Akagi T, Yu W, Yamaguchi M, et al.Mitochondrial dysfunction and tau hyperphosphorylation in Ts1Cje, a mouse model for Downsindrome. Human Molecular Genetics. 2006;15(18):2752-62.
Martínez A, Riverón G, Pupo J, Lantigua A, Martínez O. Evaluación de marcadores de estrés oxidativo en pacientes con síndrome Down en edad pediátrica. Rev Cubana Genet Comunit. 2010;4(1):23-8.
Florencia MI, Do Carmo S, Ower AK, Fortress AM, Flores AA, Hanna M, Wisniewski T, Granholm A-C, Buhusi M, Busciglio J, Cuello C. Nerve growth factor metabolic dysfunction in Down’s syndrome brains. Brain. 2014;137(3):860-72.
Strydom A, Dickinson MJ, Shende S, Pratico D, Walker Z. Oxidative stress and cognitive ability in adults with Down syndrome. Prog Neu-Psychopharmac Biolog Psychiat. 2009;33(1):76-80.
Cho CK, Drabovich AP, Batruch I, Diamandis EP. Verification of a biomarker discovery approach for detection of Down syndrome in amniotic fluid via multiplex selected reaction monitoring (SRM) assay. Journal of Proteomics. 2011;74:2052-9.
Garlet TR, Parisotto EB, de Medeiros G da S, Pereira LC, Moreira EA, Dalmarco EM, Dalmarco JB, Wilhelm Filho D. Systemic oxidative stress in children and teenagers with Down syndrome. Life Sci. 2013;93(16):558-63.
Ellis MJ, Kuan TH, Gilbert EJ, Muller PR, Henley W, Moy R, et al. Supplementation with antioxidants and folinicacid for children with Down’s syndrome: randomized controlled trial. BMJ. 2008 March 15;336(7644):594-7.
Wood KC, Granger DN. Sickle cell disease: role of reactive oxygen and nitrogen metabolites. Clin Exp Pharmacol Physiol. 2007;34:926-32.
Das EN, Das-Chowdhury T, Chattopadh-Yay A, Datta AG. Attenuation of oxidative stress-induced changes in thalassemic erythrocytes by vitamin E. Polish J Pharmacol. 2004;56:85-96.
Patne AB, Hisalkar PJ, Gaikwad SB, Patil SV. Alterations in antioxidant enzyme status with lipid peroxidation in β thalassemia major patients. International Journal of Pharmacy&LifeSciences. 2012;3(10):1-4.
DhawanV, KumarKhR, Marwaha RK, Ganguly NK. Antioxidant status in children with homozygous thalassemia. Indian Pediatrics. 2005;42:1141-45.
De Franceschi L., Bertoldi M., Matte A., Santos S. F., Pantaleo A., Ferru E. and Turrini F. Oxidative Stress and β-ThalassemicErythroid Cells behind the Molecular Defect. Oxidative Medicine and Cellular Longevity. 2013;2013:1-10.
Shazia Q, Mohammad ZH, RahmanT, Uddin Shekhar H. Correlation of Oxidative Stress with Serum Trace Element Levels and Antioxidant Enzyme Status in Beta Thalassemia Major Patients: A Review of the Literature. Anemia. 2012;2012:1-7.
Zafer Dogan, Huseyin Yildiz, Ismail Coskuner, Murat Uzel, Mesut Garipardic. Anesthesia for a patient with Fanconi anemia for developmental dislocation of the hip: a case report. Brazilian Journal of Anesthesiology. 2013.
Kumari U, Jun WY, Bay BH, Lyakhovich A. Evidence of mitochondrial dysfunction and impaired ROS detoxifying machinery in Fanconi Anemia cells. Oncogene. 2014;33:65–72.
Hori SY, Kuno A, Hosoda R, Tanno M, Miura T, Shimamoto K, Horio Y. Resveratrol Ameliorates Muscular Pathology in the Dystrophic mdx Mouse, a Model for Duchenne Muscular Dystrophy. Journal of Pharmacology and Experimental Therapeutics. 2011;338(3):784-94.
Pervaiz S, Taneja R, Ghaffari S. Oxidative stress regulation of stem and progenitor cells. Antiox Red Signal. 2009;11(11):2777-88.