2014, Número 2
<< Anterior Siguiente >>
Residente 2014; 9 (2)
La modulación de la hematopoyesis en el contexto inflamatorio
Vadillo E, Pelayo R
Idioma: Español
Referencias bibliográficas: 27
Paginas: 51-58
Archivo PDF: 319.81 Kb.
RESUMEN
De los tejidos con más alta tasa de recambio, el sanguíneo constituye uno de los más estudiados en la actualidad. Se estima que un adulto genera alrededor de 3 x 10
5 eritrocitos y 3 x 10
4 leucocitos por segundo; sin embargo, en situaciones de inflamación y estrés, esta tasa de producción a menudo se ve modificada. Para que este fenómeno se lleve a cabo, las células más primitivas del sistema hematopoyético deben reconocer citocinas proinflamatorias y factores de crecimiento, moléculas evolutivamente conservadas propias de los agentes infecciosos y sus productos, así como moléculas endógenas asociadas a daño. Además de las interacciones estrechas con los componentes del microambiente hematopoyético, estos eventos modulan específicamente la producción de los linajes mieloide y linfoide con el fin de producir las células necesarias para el combate y eliminación de los agentes infecciosos o las células dañadas. En esta revisión, nos enfocaremos en los mecanismos a través de los cuales los agentes patógenos, sus productos y algunas moléculas endógenas asociadas a daño regulan la producción de células sanguíneas tanto en humanos como en ratones en el contexto de inflamación.
REFERENCIAS (EN ESTE ARTÍCULO)
Takizawa H, Boettcher S, Manz MG. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood. 2012; 119 (13): 2991-3002. Epub 2012/01/17.
Vadillo E, Pelayo R. Toll-like receptors in development and function of the hematopoietic system. [Los receptores tipo Toll en el desarrollo y función del sistema hematopoyético]. Revista de Investigación Clínica; Órgano del Hospital de Enfermedades de la Nutrición. 2012; 64 (5): 461-476. Epub 2013/04/03.
Purizaca J, Meza I, Pelayo R. Early lymphoid development and microenvironmental cues in B-cell acute lymphoblastic leukemia. Archives of Medical Research. 2012; 43 (2): 89-101. Epub 2012/04/07.
Baba Y, Pelayo R, Kincade PW. Relationships between hematopoietic stem cells and lymphocyte progenitors. Trends in Immunology. 2004; 25 (12): 645-649. Epub 2004/11/09.
Takizawa H, Regoes RR, Boddupalli CS, Bonhoeffer S, Manz MG. Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. The Journal of Experimental Medicine. 2011; 208 (2): 273-284. Epub 2011/02/09.
Doulatov S, Notta F, Eppert K, Nguyen LT, Ohashi PS, Dick JE. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nature Immunology. 2010; 11 (7): 585-593. Epub 2010/06/15.
Vadillo E, Pelayo R. El sistema hematopoyético a partir de células troncales. En: Pelayo R (ed.). Células troncales y medicina regenerativa. Mexico: Ed. PUIS; 2011. pp. 143-171.
Blom B, Spits H. Development of human lymphoid cells. Annual Review of Immunology. 2006; 24: 287-320. Epub 2006/03/23.
Welner RS, Kincade PW, Pelayo R. Linfopoyesis temprana en médula ósea adulta. Inmunología. 2007; 26 (3): 135-144.
Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000; 404 (6774): 193-197. Epub 2000/03/21.
Iwasaki H, Akashi K. Myeloid lineage commitment from the hematopoietic stem cell. Immunity. 2007; 26 (6): 726-740. Epub 2007/06/22.
Manz MG, Miyamoto T, Akashi K, Weissman IL. Prospective isolation of human clonogenic common myeloid progenitors. Proceedings of the National Academy of Sciences of the United States of America. 2002; 99 (18): 11872-11877. Epub 2002/08/24.
Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010; 327 (5966): 656-661. Epub 2010/02/06.
Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010; 140 (6): 883-899. Epub 2010/03/23.
Welner RS, Pelayo R, Kincade PW. Evolving views on the genealogy of B cells. Nature Reviews Immunology. 2008; 8 (2): 95-106. Epub 2008/01/22.
Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators of Inflammation. 2010; 2010. Epub 2010/08/14.
Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity. 2006; 24 (6): 801-812. Epub 2006/06/20.
Welner RS, Pelayo R, Nagai Y, Garrett KP, Wuest TR, Carr DJ et al. Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection. Blood. 2008; 112 (9): 3753-3761. Epub 2008/06/17.
Belyaev NN, Brown DE, Díaz AI, Rae A, Jarra W, Thompson J et al. Induction of an IL7-R(+)c-Kit(hi) myelolymphoid progenitor critically dependent on IFN-gamma signaling during acute malaria. Nature Immunology. 2010; 11 (6): 477-485. Epub 2010/05/01.
Cain D, Kondo M, Chen H, Kelsoe G. Effects of acute and chronic inflammation on B-cell development and differentiation. The Journal of Investigative Dermatology. 2009; 129 (2): 266-277. Epub 2009/01/17.
Ueda Y, Yang K, Foster SJ, Kondo M, Kelsoe G. Inflammation controls B lymphopoiesis by regulating chemokine CXCL12 expression. The Journal of Experimental Medicine. 2004; 199 (1): 47-58. Epub 2004/01/07.
Yáñez A, Hassanzadeh-Kiabi N, Ng MY, Megías J, Subramanian A, Liu GY et al. Detection of a TLR2 agonist by hematopoietic stem and progenitor cells impacts the function of the macrophages they produce. Eur J Immunol. 2013; 43 (8): 2114-2125. Epub 2013/05/11.
Kim JM, Oh YK, Kim YJ, Youn J, Ahn MJ. Escherichia coli up-regulates proinflammatory cytokine expression in granulocyte/macrophage lineages of CD34 stem cells via p50 homodimeric NF-kappaB. Clinical and Experimental Immunology. 2004; 137 (2): 341-350. Epub 2004/07/24.
Kim JM, Kim NI, Oh YK, Kim YJ, Youn J, Ahn MJ. CpG oligodeoxynucleotides induce IL-8 expression in CD34+ cells via mitogen-activated protein kinase-dependent and NF-kappaB-independent pathways. International Immunology. 2005; 17 (12): 1525-1531. Epub 2005/11/03.
Sioud M, Floisand Y. TLR agonists induce the differentiation of human bone marrow CD34+ progenitors into CD11c+ CD80/86+ DC capable of inducing a Th1-type response. European Journal of Immunology. 2007; 37 (10): 2834-2846. Epub 2007/09/14.
De Luca K, Frances-Duvert V, Asensio MJ, Ihsani R, Debien E, Taillardet M et al. The TLR1/2 agonist PAM(3)CSK(4) instructs commitment of human hematopoietic stem cells to a myeloid cell fate. Leukemia: Official Journal of the Leukemia Society of America, Leukemia Research Fund, UK. 2009; 23 (11): 2063-2074. Epub 2009/07/31.
Dorantes-Acosta E, Pelayo R. Lineage switching in acute leukemias: a consequence of stem cell plasticity? Bone Marrow Research. 2012; 2012: 406796. Epub 2012/08/02.