2014, Número 609
<< Anterior Siguiente >>
Rev Med Cos Cen 2014; 71 (609)
Consideraciones generales de la radioterápia en los tumores cerebrales pediátricos
Rodríguez RC, Orozco CA, Liu WYC
Idioma: Español
Referencias bibliográficas: 33
Paginas: 165-171
Archivo PDF: 179.18 Kb.
RESUMEN
Los tumores cerebrales
constituyen la segunda neoplasia
más frecuente y la primera
causa de muerte de acuerdo a la
vigilancia, la epidemiología y la
supervivencia en esta población
por año, con un ligero predominio
en varones. Los tumores
cerebrales se clasifican de acuerdo
con sus tipos histológicos. El
40% son infratentoriales, el
54% supratentoriales y el 6%
se localizan en la médula. El
diagnóstico se realiza con la
TAC y RM fundamentalmente y
el tratamiento es el quirúrgico o
radioterapéutico y si es preciso
tratamiento oncológico.
La radioterapia viene aportar
diferentes modalidades en
el tratamiento para muchos
niños con tumores del sistema
nervioso central y sus mejorías
recientes en la tecnología y la
planificación del tratamiento
de radioterapia ofrecen
importantes oportunidades para
obtener beneficios terapéuticos
importantes como una alta
probabilidad de supervivencia a
largo plazo y con una disminución
del riesgo significativo en el
desarrollo de complicaciones
a corto y largo plazo en los
pacientes pediátricos.
REFERENCIAS (EN ESTE ARTÍCULO)
Adan L, Trivin C, Sainte-Rose C, et al. GH deficiency caused by cranial irradiation during childhood: factors and markers in young adults. J Clin Endocrinol Metab 2001;86:5245– 5251.
Baldwin RT, Preston-Martin S. Epidemiology of brain tumors in childhood—a review. Toxicol Appl Pharmacol 2004;199:118–131.
Central Brain Tumor Registry of the United States. CBTRUS.2004. www.cbtrus.org
Donahue B. Short- and long-term complications of radiation therapy for pediatric brain tumors. Pediatr Neurosurg 1992;18:207–217.
Edward C, Halperin. Carlos A, Perez. Luther W, Brady. Principles and Practice of Radiation Oncology. 5ta edición. Editorial Lippincott William & Wilkins. 2008; 1: 1822- 1851.
Gurney JG, Kadan-Lottick NS, Packer RJ, et al. Endocrine and cardiovascular late effects among adult survivors of childhood brain tumors: Childhood Cancer Survivor study. Cancer 2003;97:663–673.
Habrand JL, Abdulkarim B, Beaudré A, et al. La détermination des volumes-cibles en radiothérapie pédiatrique: application aux tumeurs cérébrales. Cancer Radiother 2001, 5: 711-719.
Hopewell JW. Radiation injury to the central nervous system. Med Pediatr Oncol 1998; Suppl 1: 1-9. Review.
Jakacki RI, Goldwein JW, Larsen RL, et al. Cardiac dysfunction following spinal irradiation during childhood. J Clin Oncol 1993;11:1033–1038.
Kirsch DG, Tarbell NJ. New Technologies in Radiation Therapy for Pediatric Brain Tumors: The Rationale for Proton Radiation Therapy. Pediatr Blood Cancer 2004; 42(5): 461-464. Review.
Kooy HM, Dunbar SF, Tarbell NJ, et al. Adaptation of the relocatable Gill-Thomas-Cosman frame in stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 1994; 30(3): 685-691.
Kortmann RD, Timmermann B, Taylor RE, Scarzello G, Plasswilm L, et al. Current and future strategies in radiotherapy of childhood lowgrade glioma of the brain. Part II: treatment-related late toxicity. Strahlenther Onkol 2003; 179(9): 585-597.
Krishnamoorthy P, Freeman C, Bernstein ML, et al. Osteopenia in children who have undergone posterior fossa or craniospinal irradiation for brain tumors. Arch Pediatr Adolesc Med 2004;158:491– 496.
Mazeron JJ, Maugis A, Barret C, Mornex F. Techniques d’irradiation des cancers: la radiothérapie conformationnelle. Paris: Editions Maloine, 2005.
Merchant TE, Fouladi M. Ependymoma: new therapeutic approaches including radiation and chemotherapy. J Neurooncol 2005;75:287–299.
Merchant TE, Hua C, Shukla H, et al. Proton versus photon radiotherapy for common pediatric brain tumors: comparison of models of dose characteristics and their relationship to cognitive function. Pediatr Blood Cancer 2008; 51: 110-117.
Merchant TE, Williams T, Smith JM, et al. Preirradiation endocrinopathies in pediatric brain tumor patients determined by dynamic tests of endocrine function. Int J Radiat Oncol Biol Phys 2002;54:45–50.
Merchant TE, Zhu Y, Thompson SJ, et al. Preliminary results from a Phase II trial of conformal radiation therapy for pediatric patients with localized low-grade astrocytoma and ependymoma. Int J Radiat Oncol Biol Phys 2002; 52(2): 325-332.
Mulhern RK, Palmer SL, Reddick WE, et al. Risks of young age for selected neurocognitive deficits in medulloblastoma are associated with white matter loss. J Clin Oncol 2001;19:472–479.
Narod SA, Stiller C, Lenoir GM. An estimate of the heritable fraction of childhood cancer. Br J Cancer 1991;63:993–999.
Palmer SL, Goloubeva O, Reddick WE, et al. Patterns of intellectual development among survivors of pediatric medulloblastoma: a longitudinal analysis. J Clin Oncol 2001;19:2302–2308.
Reimers TS, Ehrenfels S, Mortensen EL, et al. Cognitive deficits in longRODRÍGUEZ, OROZCO, CHENG: RADIOTERAPIA EN LOS TUMORES CEREBRALES PEDIÁTRICOS 171 term survivors of chilhood brain tumors: Identification of predictive factors. Med Pediatr Oncol 2003; 40: 26-34.
Ricardi U, Corrias A, Einaudi S, Genitori L, Sandri A, et al. Thyroid dysfunction as a late effect in childhood medulloblastoma: a comparison of hyperfractionated versus conventionally fractionated craniospinal radiotherapy. Int J Radiat Oncol Biol Phys 2001; 50(5): 1287-1294.
Rickert CH, Paulus W. Epidemiology of central nervous system tumors in childhood and adolescence based on the new WHO classification. Childs Nerv Syst 2001;17:503–511.
Robertson PL, Muraszko KM, Holmes EJ, et al. Incidence and severity of postoperative cerebellar mutism syndrome in children with medulloblastoma: A prospective study by the Children’s Oncology Group. J Neurosurg 2006; 105: 444- 451.
Schmiegelow M, Lassen S, Weber L,. Dosimetry and growth hormone deficiency following cranial irradiation of childhood brain tumors. Med Pediatr Oncol 1999;33:564–571.
Schoch B, Koncsak J, Dimitrova A, et al. Impact of surgery and adjuvant therapy on balance function in children and adolescents with cerebellar tumors. Neuropediatrics 2006; 37: 350-358.
Sklar CA, Constine LS. Chronic neuroendocrinological sequelae of radiation therapy. Int J Radiat Oncol Biol Phys 1995;31:1113–1121.
Smitt MC, McPeak EM, Donaldson SS. The advantages of threedimensional conformal radiotherapy for treatment of childhood cancer. Radiat Res 1998; 150(5 suppl): S170-S177.
Sonderkaer S, Schmiegelow M, Carstensen H, et al. Long-term neurological outcome of chilhood brain tumors treated by surgery only. J Clin Oncol 2003; 21: 1347-1351.
Surveillance Epidemiology and End Results. SEER 2006. http://seer. cancer.gov/publications
Taylor RE. Current developments in radiotherapy for paediatric brain tumours. Eur J Paed Neurol 2006; 10(4): 167-175. Review.
Wrensch M, Minn Y, Chew T, et al. Epidemiology of primary brain tumors: current concepts and review of the literature. Neurooncology 2002;4:278–299.