2005, Número 5
<< Anterior Siguiente >>
Gac Med Mex 2005; 141 (5)
Regulación del metabolismo del colesterol y ácidos grasos en el síndrome nefrótico experimental por las proteínas que se unen a los elementos regulatorios de esteroles (SREBP´s): efecto de la soya
Tovar A, Manzano N, Torres N
Idioma: Español
Referencias bibliográficas: 59
Paginas: 407-416
Archivo PDF: 187.82 Kb.
RESUMEN
El síndrome nefrótico (SN) cursa con hiperlipidemia. Se conoce que la biosíntesis del colesterol y de los ácidos grasos es regulada por los factores transcripcionales que se unen a los elementos de respuesta a esteroles (SREBP’s). El consumo de proteína de soya disminuye la concentración de estos lípidos, aunque su mecanismo de acción no es del todo conocido. El objetivo de este estudio fue conocer si el consumo de la proteína de soya reduce los niveles de colesterol y triglicéridos a través de una regulación de las SREBP’s. Se estudiaron ratas Wistar macho con SN experimental por 64 días. Se observó que las concentraciones plasmáticos de colesterol y triglicéridos plasmáticos, así como de la proteinuria eran significativamente menores en las ratas alimentadas con proteína de soya que aquellas que consumían caseína. Estos cambios se asociaron con disminución de la expresión del ARNm SREBP-1 y de las enzimas de la síntesis de ácidos grasos. Los análisis por Western Blot revelaron que en los núcleos de hepatocitos obtenidos de ratas alimentadas con proteína de soya hubo menor presencia del factor transcripcional SREBP-1. Los resultados de este estudio indican que el consumo de proteína de soya produce efectos benéficos durante el síndrome nefrótico.
REFERENCIAS (EN ESTE ARTÍCULO)
Torres N, Bourges H, Tovar AR. Regulación de la expresión génica por nutrimentos. Arch Latinoam Nutr 1996;46:89-96.
Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986;232:34-47.
Gasic GP. Basic-helix-loop-helix transcription factor and sterol sensor in a single membrane-bound molecule. Cell 1994;77:17-19.
Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997;89:331-340.
Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, et al. SREBP-1, a basic helix-loop-helix leucine zipper protein that controls transcription of the LDL receptor gene. Cell 1993;75:187-197.
Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990;343:425-430.
Horton JD, Bashmakov Y, Shimomura I, Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci USA 1998;95:5987-5992.
Kawabe Y, Suzuki T, Hayashi M, Hamakubo T, Sato R, Kodama T. The physiological role of sterol regulatory element binding protein-2 in cultured human cells. Biochim Biophys Acta 1999;1436:307-318.
Shimano H, Horton JD, Hammer RE, Shimomura I, Brown MS, Goldstein JL. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest 1996;7:1575-1584.
Shimano H, Schimomura I, Hammer R, Hero J, Goldstein JL, Brown MS, Horton JD. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest 1997;100:2115-2124.
Shimomura I, Bashmakov Y, Shimano H, Horton JD, Goldstein JL, Brown MS. Cholesterol feeding reduces nuclear forms of sterol regulatory element binding proteins in hamster liver. Proc Natl Acad Sci USA 1997;94:12354-12359.
Ericsson, Jackson SM, Lee BC, Edwards PA. Sterol element binding protein binds to a cis element on the promoter of the farnesyl diphosphate synthase gene. Proc Natl Acad Sci USA 1996;93:945-950.
Guan G, Jiang G, Koch RL, Scechter I. Molecular cloning and functional analysis of the promoter of the human squalene synthasa gene. J Biol Chem 1995;270:21958-21965.
Pai J, Gurney O, Brown MS, Goldstein JL. Differential stimulation of cholesterol and unsatured fatty acid biosynthesis in cells expressing individual nuclear sterol regulatory element-binding protein. J Biol Chem 1998;273:26138-26148.
Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest 1997;99:846-854.
Shimomura I, Shimano H, Korn B, Bashmakov Y, Horton J. Nuclear sterol regulatory element binding proteins active genes responsibles for the entire programs of unsaturated fatty acid biosynthesis in transgenic mouse liver. J Biol Chem 1998;273:35229-35306.
Boizard M, LeLiepvre X, Lemarchand P, Fuvfelle F, Ferré P, Dugali I. Obesity-related overexpression of fatty acid synthase gene in adiposite tissue involves sterol regulatory element-binding protein transcription factors. J Biol Chem 1998;273:29164-29171.
Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein. J Clin Invest 1998;101:2331-2339.
Magaña MM, Koo SH, Towle HC, Osborne TF. Different sterol regulatory element binding protein-1 isoforms utilize distinct co-regulatory factors to activate the promoter for fatty acid synthase. J Biol Chem 2000;275:4726-4733.
Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes & Development 1996;10:1096-1107.
López JM, Bennett MK, Sánchez HB, Rosenfeld JM, Osborne TF. Sterol regulation of acetyl coenzyme A carboxylase: a mechanism for coordinate control of cellular lipid. Proc Natl Acad Sci USA 1996;93:1049-1053.
Magaña MM, Osborne TF. Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter. J Biol Chem 1996;271:32689-32694.
Tontonoz P, Kim JB, Graves RA, Spiegelman BM. ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol 1993;13:4753-4759.
López D, McLean MP. Sterol regulatory element binding protein-1a binds to cis elements in the promoter of the rat high density lipoprotein receptor SR-BI gene. Endocrinol 1999;140:5669-5681.
Sato R, Miyamoto W, Inoue J, Terada T, Imanaka T, Maeda M. Sterol regulatory element binding protein negatively regulates microsomal triglyceride transfer protein gene transcription. J Biol Chem 1999;274:24714-24720.
Hua X, Yokoyama C, Wu J, Brigss MR, Brown MS, Goldstein JL, Wang X. SREBP-2 a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatoy element. Proc Natl Acad Sci USA 1993;90:11603-11607.
Wang X, Sato R, Brown MS, Hua X, Goldstein JL. SREBP-1, a membrane-bound transcription factor released by sterol-regulated of proteolysis. Cell 1994;77:53-62.
Duncan EA, Brown MS, Goldstein JL, Sakai J. Cleavage site for sterol-regulated protease localized to a leu-ser bond in lumenal loop of sterol regulatory element binding protein-2. J Biol Chem 1997;272:12778-12785.
Hua X, Sakai J, Ho YK, Goldstein JL, Brown MS. Hairpin orientation of sterol regulatory element binding protein-2 in cell membranes as determinated by protease protection. J Biol Chem 1995;270:29422-29427.
Hua X, Sakai J, Brown MS, Goldstein JL. Regulated cleavage of sterol regulatory element binding proteins requires sequences on both sides of the endoplasmic reticulum membrane. J Biol Chem 1996;271:10379-10384.
Sakai J, Duncan EA, Rawson RB, Hua X, Brown MS, Goldstein JL. Sterol-regulated release of SREBP-2 form cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 1996;85:1037-1046.
Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 1995;333:
Baum A, Teng H, Erdman JW, Weigel R, Klein BP, Persky VW, et al. Long-term intake of soy protein improves blood lipid profiles and increases mononuclear cell low-density-lipoprotein receptor messenger RNA in hypercholesterolemic postmenopausal women. Am J Clin Nutr 1998;68:545-551.
Nagata C, Takatsuka N, Kurisu N, Shimizu H. Decreased serum total cholesterol concentration is associated with high intake of soy products in japanese men and women. J Nutr 1998;128:209-213.
Wong WW, O’Brian S, Stuff JE, Hachey DL, Heird WC, Pownell HJ. Cholesterol-lowering effect of soy protein in normocholesterolemic and hypercholesterolemic men. Am J Clin Nutr 1998;72:1385S-1389S.
Potter SM, Pertile J, Berber-Jiménez D. Soy protein similar lower blood serum cholesterol but differently affect thyroid hormones in hamsters. J Nutr 1996;126:2007-2011.
Tovar-Palacio C, Potter SM, Hafermann JC, Shay NF. Intake of soy protein and soy protein extracts influences lipid metabolism and hepatic gene expression in gerbils. J. Nutr. 1998;128:839-842.
Greaves KA, Parks JS, Williams JK, Wagner JD. Intact dietary soy protein, but not adding an isoflavone-rich soy extract to casein improves plasma lipids in ovariectomized cynomolgus monkeys. J. Nutr. 1999;129:1585-1592.
Harris VC, Ismail N. Extrarenal complications of nephrotic syndrome. Am J Kidney Dis 1994;23:477-497.
Wheeler DC, Bernard DB. Lipid abnormalities in the nephrotic syndrome: causes, consequences, and treatment. Am J Kidney Dis 1994;23:331-346.
D’Amico G, Remuzzi G, Maschio G, Gentile MG, Gotti E, Oldrizzi L, et al. Effect of dietary proteins and lipids in patients with membranous nephropathy and nephritic syndrome. Clin Nephrol 1991;35:237-242.
D’Amico G, Gentile MG, Manna G, Fellin G, Ciceri R, Cofano F, et al. Effect of vegetarian soy diet on hyperlipidaemia in nephrotic syndrome. Lancet 1992;339:1131-1134.
Kontessis P, Jones S, Dodds R, Trevisan R, Nosadini R, Fioretto P, et al. Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int. 1990;38:136-144.
Tovar AR, Murguia F, Cruz C, Hernández-Pando R, Aguilar-Salinas CA, Pedraza-Chaverri J, et al. A soy protein diet alters hepatic lipid metabolism gene expressión and reduces serum lipids and renal fibrogenic cytokines in rats with chronic nephrotic syndrome. J Nutr 2002;132:2562-2569.
Sacks FM, Breslow JL, Wood PG, Kass EH. Lack of an effect of dietary protein (casein) and soy protein on plasma cholesterol of strict vegetarians. An experimental and a critical review. J lipid Res 1983;24:1012-1020.
Grundy MS, Abrams JJ. Comparison of actions of soy protein and casein on metabolism of plasma lipoprotein and cholesterol in humans. Am J Clin Nutr 1983;38:245-252.
Duane WC. Effect of soybean protein and very low dietary cholesterol on serum lipids, billiary lipids, and fecal sterol in humans. Metabolism 1999;48:489-494.
Crouse JR, Morgan T, Terry JG, Ellis J, Vitolins M, Borke GL. A randomized trial comparing the effect of casein with that of soy protein containing varying amounts of isoflavones on plasma concentrations of lipids and lipoproteins. Arch Intern Med 1999;159:2070-2076.
Powell EE, Kroon PA. Low density lipoprotein receptor and 3-hidroxy-3-methylglutaryl coenzyme A reductase gene expression in human mononuclear leucocytes is regulated coordinately and parallels gene expressión in human liver. J Clin Invest 1994;93:2168-2174.
Golper TA, Feingold KR, Fulford MH, Siperstein MD. The role of circulating mevalonate in nephrotic hypercholesterolemia in the rat. J Lipid Res 1986;27:1044-1051.
Dulbach U, Recant L, Hatch E, Koch MB. Negative feedback mechanism of cholesterol synthesis in experimental nephrosis. Proc Soc Exp Biol USA 1961;106:136-139.
Vaziri ND, Liang KH. HMG-CoA reductase gene expression during the course of puromycin-induced nephrosis. Kidney Int. 1995;48:1979-1985.
Thabet MAEH, Calla A, Chanj LM, Paudak WH, Heuman DM, Vlahcevic ZR. Studies of the alteration of hepatic cholesterol metabolism in puromycin-induced nephrotic syndrome in rats. Kidney Int 1993;44:789-794.
Shearer GC, Stevenson FT, Atkinson DN, Hardin Jones J, Staprans I, Kaysen GA. Hypoalbuminemia and proteinuria contribute separately to reduced lipoprotein catabolism in the nephrotic syndrome. Kidney Int. 2001;59:179-189.
Iritani N, Hosomi H, Fukuda H, Tada K, Ikeda H. Soybean protein suppresses hepatic lipogenic enzyme gene expression in Wistar fatty rats. J. Nutr. 1996;126:380-388.
Tovar AR, Ascencio C, Torres N. Soy protein, casein, and zein regulate histidase gene expression by modulating serum glucagon. Am J Physiol Endocrinol Metab 2002;283:E1016-E1022.
Xu J, Teran-Garcia M, Park JH, Nakamura MT, Clarke SD. Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcrit decay. J Biol Chem 2001;276:9800-9807.
Bennet MK, Osborne TF. Nutrient regulation of gene expression by the sterol regulatory element binding protein: increased recruitment of gene-specific coregulatory factors and selective hyperacetylation of histone H3 in vivo. Proc Natl Acad Sci USA 2000;97:6340-6344.
DeBose-Boyd RA, Ou J, Goldstein JL, Brown MS. Expression of sterol regulatory element-binding protein 1c (SREBP-1c) mRNA in rat hepatoma cells requires endogenous LXR ligands. Proc Natl Acad Sci USA 2001;98:1477-1482.