2005, Número 4
<< Anterior Siguiente >>
Gac Med Mex 2005; 141 (4)
Fibrosis Hepática. El papel de las metaloproteinasas y de TGF-Β
Sentíes-Gómez MD, Gálvez-Gastélum FJ, Meza-García E, Armendáriz-Borunda J,
Idioma: Español
Referencias bibliográficas: 53
Paginas: 315-322
Archivo PDF: 144.05 Kb.
RESUMEN
La fibrosis hepática involucra múltiples eventos celulares y moleculares que inducen un excesivo depósito de proteínas de matriz extracelular que distorsionan la arquitectura del parénquima hepático, cuya etapa final es conocida como cirrosis. El daño proviene de una variedad de causas como abuso de drogas y enfermedades virales, autoinmunes, metabólicas y colestásicas. La degradación de estas proteínas de matriz ocurre predominantemente como una consecuencia de la acción de metalopro-teinasas (MMPs) que degradan sustratos colágenos y no colágenos. La degradación de la matriz en el hígado se lleva a cabo principalmente por la acción de cuatro de estas enzimas: MMP-1, MMP-2, MMP-3 y MMP-9. En el sistema fibrinolítico, las MMPs pueden ser activadas a través de un corte proteolítico por acción del activador de plasminógeno tipo urocinasa y un segundo mecanismo de activación es realizado por las mismas MMPs. La regulación para restringir la actividad puede ser a diferentes niveles; en el sistema fibrinolítico el principal regulador es el PAI-1, molécula que bloquea la conversión de plasminógeno a plasmina y la MMP no puede ser activada. Un segundo nivel de inhibición es posible a través del TIMP, que inhibe la actividad proteolítica aun cuando las MMPs hayan sido activadas vía plasmina. Durante condiciones patológicas la sobreexpresión de estos inhibidores es dirigida por el factor de crecimiento transformante-Β, el cual en un padecimiento fibrótico actúa como el más importante factor adverso.
REFERENCIAS (EN ESTE ARTÍCULO)
Zakim D. In: Fisiopatología: principios biológicos de la enfermedad (eds. Smith LH & Thier) 1138-1177 (Médica Panamericana, México, 1999).
Crispe NI. Hepatic cells and liver tolerance. Nature Rev Immunol 2003;3:51-62.
Geerts A. History heterogeneity developmental biology and functions of quiescent hepatic stellate cells. Semin Liv Dis 2001;21:311-335.
Friedman S. Liver fibrosis-from bench to beside. J of Hepatol 2003;38:s38-s53.
Friedman S, Michael A. Reversing hepatic fibrosis. Science & Medicine 2002;8:194-205.
Harrison EH. Symposium:Mechanistic aspects of vitamin and coenzyme utilization and function:A symposium in recognition of distinguished career of Dondald B.McCormik. Journal of Nutrition 2000;130:340S-344S.
Brinckerhoff C. Interstitial collagenases as a markers of tumor progression. Clin Cancer Res 2000;6:4823-4830.
Arthur MJ. Fibrogenesis II. Metalloproteases and their Inhibitors in liver fibrosis. Am J Physiol, Gastrointes Liver Physiol 2000;279:G245-G249.
Egeblad M, Zena W. New functions of the matrix metalloproteases in cancer progression. Nat Rev Cancer 2002;2:161-174.
www.rzpd.de/cards/index/htlm.
Murphy G, Stanton H, Cowell S, Butler G, Knäuper V, Atkinson S, et al. Mechanism for pro-matrix metalloprotease activation. APMIS 1999;107:38-44.
Westermark J, Kähäri VM. Regulation of matrix metalloproteases expression tumor invasion. FASEB J 1999;13:781-792.
Lijnen HR. Matrix metallorprotease and the cellular fibrinolytic activity. Biochemistry (Moscow) 2002;67:107-115.
Wallon M & Christopher MO. The hemopexin like domain (C domain) of human gelatinase A (matrix metalloprotease -2) requires Ca2+ for fibronectin and heparin binding. JBC 1997;272:7473-7481.
Harold E, Van W, Henning BH. The cistyne switch. A principle of regulation of metalloproteases activity with potential applicability to the entire matrix metalloprotease gen Family. PNAS 1990;87:5578-5582.
Ramos De Simone N, Hahn-Dantona E, Hideaki Nagase JS, French DL, Quigley J. Activation of matrix metalloprotease -9 (MMP-9) a convering plasmin/stromelysin-1 cascade enhances tumor cell invasion. JBC 1999;274:13066-13076.
Lijnen HR, Begona A, Berthe VH, Desiré C & Paul GD. Inactivation of Plasminogen Activator Inhibitor-1 by specific proteolysis with stromelysin-1 (MMP-3). JBC 2000;275:37645-37650.
Massagué J. Integration of Smad and MAPK pathways: a link and a linker revised. Genes Dev 2003;17:2993-2997.
Iredale J. Cirrhosis: new research provides a basis for rational and targeted treatments. British Medical Journal 2003;327:143-147.
Fujimoto J. Gene therapy for liver cirrhosis. J of Gastroenterol and Hepatol 2000;15:D33-D36.
Bribiesca LB. La cirrosis hepática. ¿puede ser reversible? Acta Médica Grupo Ángeles 2003;1:37-39.
Olaso E, Fridman S. Molecular regulation of hepatic fibrogenesis. J of Hepatol 1998;29:836-847.
Roberts A. TGF-B signaling from receptors to the nucleus. Microbes and Infection 1999;1:1265-1273.
Vilchis-Landeros M, Juaréz P, López-Casillas F. El papel fisiopatológico del TGF-b en las nefropatías de diversas etiologías: los inhibidores del TGF-b como agentes terapéuticos potenciales. Gac Med Mex 2003;139:126-134.
López-Casillas F, Massagué J. TGF-B: receptores, señales y acciones. Gac Med Mex 2003;139:139-143.
Galvez-Gastelum FJ, Sandoval-Rodriguez A, Armendariz-Borunda J. El factor de crecimiento transformante B como blanco terapéutico. Salud Publica Mex 2004;46:
Border AW, Noble AN. TGF-B. Scientific American Science & Medicine 1995;2:68-77.
Peralta-Zaragoza O, Lagunas-Martinez A, Madrid-Marina V. Transforming growth factor beta-1: structure, function, and regulation mechanisms in cancer. Salud Publica Mex 2001;43:340-351.
Bissell M, Roulot D, George J. Transforming growth factor and the liver. Hepatol 2001;34:859-867.
Hernandez-Canaveral I, Gonzalez J, Lopez-Casillas F, Armendariz-Borunda J. Amplified expression of dominant-negative transforming growth factor-beta type II receptor inhibits collagen type I production via reduced Smad-3 activity. J Gastroenterol Hepatol 2004;19:380-387.
Caestecker M. The transforming growth factor-B superfamily of receptors. Cytokine Growth Factor Rev 2004;15:1-11.
Kondou H, Mushiake S, Etani Y, Moyoshi Y, Michigami T, Ozono K. A blocking peptide for transforming growth factor-B1 activation prevents hepatic fibrosis in vivo. J Hepatol 2003;39:742-748.
Armendariz-Borunda J. Transforming Growth Factor B gene expression is transiently enhanced at critical stage during liver regeneration after CCl4 treatment. Laboratory Investigation 1993;69:283-294.
Tsuchida K, Zhu Y, Silva S, Dunn SR, Sharma K. Role of Smad-4 on TGF-B induced extracellular matrix stimulation in mesangial cells. Kidney Int 2003;63:2000-2004.
Zhu H A, B. Regulation of transforming growth factor B signaling. Mol Cell Biol Res Commun 2001;4:321-330.
Armendáriz Borunda J, Jeorme S, Andrew K, Raghow P. Regulation of TGF-B gene expression in rat liver intoxicated with carbon tetrachloride. FASEBJ 1990;4:215-221.
Armendáriz-Borunda J. Kupffer cells from carbon tetrachloride-injured rat livers produce chemotactic factors for fibroblast and monocytes: the role of tumor necorsis factor -a. Hepatology 1991;14:895-900.
Eikmans M, BJJ, De Heer E, Brujin JA. ECM homeostasis in renal disease:a genomic approach. Journal of Pathology 2003;200:526-536.
Flavell GLR. Transforming growth factor -b in T cell biology. Nature Immunol Rev 2002;2:46-53.
Moustakas Aristidis SS, Heldin Carl-Henrik. Smad regulation in TGF-b signal transduction. Journal of Cell Science 2001;114:4359-4369.
Massagué Joan WD. Transcriptional control of the TGF-b/Smad signaling system. EMBO Journal 2000. p. 1745-1754.
Piek Ester H. C.-H. D. T. P. Specificity,diversity and regulation in TGF-b superfamily signaling. FSEB Journal 1999;13:2105-2124.
Iimuro Y, Nishio T, Morimoto T, Nitta T, Stefanovic B, Choi S et al. Delivery of matrix metalloprotease-1 attenuates established liver fibrosis in the rat. Gastroenterology 2003;124:445-458.
García L, Hernández I, Sandoval A, Garcia J, Vera J, Grijalva G, et al. Pirfenidone effectively reverses experimental liver fibrosis. J Hepatol 2002;37:797-805.
García-Bañuelos J, Siller-López F, Aguilar-Córdova E, Armendáriz-Borunda J. Cirrhotic rat livers with extensive fibrosis can be transduced with clinical grade adenoviral vectors. Gene Ther 2002;9:127-134.
Siller-López F, García-Bañuelos J, Hasty K, Segura J, Ramos-Marquez M, Qoronfleh M, et al. Truncated active matrix metalloprotease-8 gene expression in HepG2 cells is active against native type I collagen. Journal of Hepatology 2000;33:758-763.
Siller-López F, Sandoval A, Salgado S, Salazar A, Bueno M, García J et al. Treatment with human metalloprotease-8 gene delivery ameliorates experimental rat liver cirrhosis. Gastroenterology 2004;126:1122-1133.
Alejandra Miranda, Ana Rosa Rincón, Silvia Salgado, José Vera-Cruz, Javier Gálvez, Ma Cristina Islas et al. Improved Effects of Viral Gene Delivery of human uPA plus Biliodigestive Anastomosis Induce Recovery from Experimental Biliary Cirrhosis. Molecular Therapy 2004; 9:
Salgado S, García J, Vera J, Siller F, Bueno M, Miranda A et al. Liver cirrhosis is reverted by urokinase-type Plasminogen Activator gene therapy. Mol Ther 2000;2:545-551.
Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said H, Lorenzen J, et al. Smad-7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 2003;125:178-191.
Arias M, Sauer-Lehnen S, Treptau J, Janoschek N, Theuerkauf I, Buettner R et al. Adenoviral expression of a transforming growth factor B1 antisense mRNA is effective in preventing liver fibrosis in bile-duct ligated rats. BMC Gastroenterol 2003;3:1-12.
Armendáriz Borunda J, Galvez J, Segura A, Miranda A & Beas C. Combined hUPA plus MMP-8 gene therapy reverts cirrhosis and improves hepatic encephalopathy. Hepatology 2003; 38: 336A-337A.