2005, Número 1
<< Anterior Siguiente >>
Gac Med Mex 2005; 141 (1)
Toxicidad de venenos de serpientes de importancia médica en México.
de Roodt AR, Estévez-Ramírez J, Paniagua-Solís JF, Litwin S, Carvajal-Saucedo A, Dolab JA, Robles-Ortiz LE, Alagón A
Idioma: Español
Referencias bibliográficas: 68
Paginas: 13-22
Archivo PDF: 102.17 Kb.
RESUMEN
La caracterización de las actividades tóxicas de los venenos de serpientes es necesaria para el cabal entendimiento de los procesos fisiopatológicos que se producen ante su mordedura, como también para evaluar la potencia neutralizante de los antivenenos utilizados para tratar estos envenenamientos. A causa de los pocos datos disponibles sobre la toxicidad del veneno de serpientes con importancia sanitaria en México, estudiamos las actividades tóxicas de los venenos de
Bothrops asper, Athropoides nummifer, Agkistrodon billineatus> Crotalus durissus durissus, Crotalus basiliscus, Crotalus scutulatus, Crotalus atrox y Micrurus nigrocinctus. A los venenos se les realizaron los siguientes estudios: SDS-PAUE, determinación de la potencia letal, y de las actividades hemorrágica, necrotizante, coagulante en plasma y fibrinó-geno, fosfolipásica y fibrinogenolítica. Se estudió además la capacidad neutralizante de un antiveneno de uso corriente para la terapéutica de las mordeduras de serpientes venenosas en México, sobre varias de estas actividades. Los venenos de vipéridos mostraron actividades hemorrágicas, necrotizante, coagulante sobre plasma, protrombínica, fibrinogenolítica y fosfolipásica importantes. Los venenos de mayor potencia letal fueron los de Micrurus nigrocinctus y Crotalus scutulatus, sin embargo el veneno que presentó en general potencias tóxicas mayores fue el de Bothrops asper. Las diferentes potencias tóxicas halladas se encontraron dentro de los márgenes descritos para especies de vipéridos y elápidos de Sudamérica. La actividad sobre el plasma y el fibrinógeno fue muy diferente en los diferentes venenos viperinos, sin embargo todos mostraron ser capaces de afectar componentes del sistema de la coagulación. El antiveneno probado no sólo neutralizó la letalidad del veneno sino también sus actividades tóxicas.
REFERENCIAS (EN ESTE ARTÍCULO)
World Health Organization. Progress in the Characterization of Venoms and Standarization of Antivenoms. Offset Publication, WHO, Geneva, 1981.
Reid HA, Theakston RDG. The management of snake bite. Bulletin of the World Health Organization 1983;61:885-895.
Russell FE, Walter FG, Bey TA, Fernández MC. Snakes and snakebite in Central America. Toxicon 1997;35:1469-1522.
Costa Cardoso JL, Fan HW. Snakebites in South America. En: Mejer J, White J. (eds.): Handbook of Clinical Toxicology of Animal Venoms and Poisons. CRC Press, Boca Raton. 1995.PP. 261-329.
Sasa M, Vazquez S. Snakebite envenomation in Costa Rica: a revision of incidence in the decade 1990-2000. Toxicon 2003;41:19-22.
Julia Zertuche J. Mexican reptiles of significance for public health and their geographic distribution. Salud Pública Mex 1981;23:329-343.
Sotelo Cruz N, Cruz-Ozuna SL. Rattlesnake bites in children. Bol Med Hosp Infant Mex 1986;43:558-564.
Sotelo Cruz N. Envenenamiento por mordedura de serpiente de cascabel, años a la salud y su tratamiento en edad pediátrica. Gac Méd Méx 2003;139:347-324.
Tay Zabala J, Diaz Sánchez JG, Sánchez Vega JT, Ruiz Sánchez D, Castillo L. Serpientes y reptiles de importancia médica en México: Revista de la Facultad de Medicina 2002;45:212-219.
Farmacopea de los Estados Mexicanos. 70 Edición. Dirección General de Control de Insumos para la Salud y Comisión Permanente de la Farmacopea de los Estados Mexicanos. 2002. PP. 1803-185.
Vidal JC. Venenos de serpientes. Bioquímica y Farmacología. Ciencia e Investigación 1976;32:3-23.
Mebs D. Pharmacology of reptilian venoms. En Biology of the reptilia, Carl Gans, Ed. Vol.VIII, Cap.4,. Acad. Press, N. York-London. 1989. PP. 437-559
Hawgood BJ. Crotoxin, the phospholipase A2 neurotoxin from the venom of Crotalus durissus terrificus. Mem. Inst. Butantan 1990;52(supl.):21-22.
Kaiser II, Aird SD. A crotoxin homolog from the venom of the uracoan rattlesnake (Crotalus vegrandis). Toxicon 1987;25:1113-1120.
Rael ED, Knight RA, Zepeda H. Electrophoretic variants of Mojave rattlesnake (Crotalus scutulatus scutulatus) venoms and migration differences of Mojave toxin. Toxicon 1984;22:980-985.
Glenn JL, Straight RC. Venom characteristics as an indicator of hybridization between Crotalus viridis viridis and Crotalus scutulatus scutulatus in New Mexico. Toxicon 1990;28:857-862.
Bush SP, Cardwell MD. Mojave rattlesnake (Crotalus scutulatus scutulatus) identification. Wilderness Environ Med 1999;10:6-9.
Farstad D, Thomas T, Chow T, Bush S, Stiegler P. Mojave rattlesnake envenomation in southern California: a review of suspected cases. Wilderness Environ Med 1997;8:89-93.
Theakston RDG, Reid HA. Development of simple standard assay procedures for the characterization of snake venoms. Bulletin of the World Health Organization 1983;61:949-956.
Ferreira ML, Moura Da Silva AM, Franca FOS, Cardoso JL, Mota I. Toxic activities of venoms from nine Bothrops species and their correlation with lethality and necrosis. Toxicon 1992;30:1063-1068.
Sanchez EF, Freitas TB, Ferreira-Alves DL, Velarde DT, Diniz MR, Cordeiro MN, Agostini-Cotta G, Diniz CR. Biological activities of venoms from South American snakes. Toxicon 1992;30:95-103.
Minton SA. Toxicity of venoms from some little known Mexican rattlesnakes. Toxicon 1977;15:580-581.
Possani LD, Sosa BP, Alagon AC, Burchfleld PM. The venom from the snakes Agkistrodon bilineatus Taylori and Crotalus durissus Totonacus: lethality, biochemical and immunological properties. Toxicon 1980;18:356-360.
Glenn JL, Straight RC. Venom properties of the rattlesnakes (Crotalus) inhabiting the Baja California region of Mexico. Toxicon 1985;23:769-775.
Russell FE. Snake venom immunology: historical and practical considerations. J. Toxicol -Toxin Rev 1989;7:1-82.
Chippaux JP, Goyffon M. Venoms, antivenoms and immunotherapy. Toxicon 1998;36:823-846.
García Willis CE. Treatment evolution Using Fabotherapics in Patients Suffering from Snakebites at the General Hospital of Tampico, Tamaulipas State. México. J Venom Anim Toxins 2001;7:336.
Laemmli UK. Cleavage of structural during the assembly of the head bacteriophage T4. Nature 1970;227:680-685.
Santoro ML, Sano Martins I. Different Clotting mechanisms of Bothrops jararaca snake venom on human and rabbit plasmas. Toxicon 1993;31:733-742.
Meier J, Theakston RDG. Aproximate LD50 deterrmiations of snakes venoms using eight to ten experimental animals. Toxicon 1986;24:395-401.
Ferreira ML, Moura Da Silva AM, Mota I. Neutralization of different activities of venoms from nine species of Bothrops snakes by Bothrops jararaca antivenom. Toxicon 1992;30:1591-1602.
de Roodt AR, Dolab JA, Fernández T, Segre L, Hajos SE. Cross reactivity and heterologous neutralization of crotaline antivenoms used in Argentina. Toxicon 1998;36:1025-1038.
de Roodt AR, Vidal JC, Litwin S, Dolab JA, Hajos SE, Segre L. Neutralización cruzada del veneno de Bothrops jararacussu por sueros anriofidicos heterólogos. Medicina (Buenos Aires), 1999;59:238-242.
Tu A, Miller RA. Biochemical studies of the sea snake neurotoxins. Mem. Inst. Butantan 1989;51:177-193.
Glenn JL, Straight RC, Wolfe MC, Hardy DL. Geographical variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) venom properties. Toxicon 1983;21:119-130.
Rael ED, Lieb CS, Maddux N, Varela-Ramirez A, Perez J. Hemorrhagic and Mojave toxins in the venoms of the offspring of two Mojave rattlesnakes (Crotalus scutulatus scutulatus). Comp. Biochem Physiol B 1993;106:595-600.
Huang SY, Perez JC, Rael ED, Lieb C, Martinez M, Smith SA. Variation in the antigenic characteristics of venom from the Mojave rattlesnake (Crotalus scutulatus scutulatus). Toxicon 1992;30:387-396.
Martinez M, Rael ED, Maddux NL. Isolation of a hemorrhagic toxin from Mojave rattlesnake (Crotalus scutulatus seutulatus) venom. Toxicon 1990;28:685-694.
Sanchez EE, Garcia C, Perez JC, De La Zerda. The detection of hemorrhagic proteins in snake venoms using monoclonal antibodies against Virginia opossum (virginiana) serum. Toxicon 1998;36:1451-1459.
Mandelbaum FR. Snake venoms hemorrhagins. Mem Inst Butantan 1990;52(supl.):35-36.
Bjarnasson JB, Fox JW. Hemorrhagic metalloproteinases from snakes venoms. Pharmac Ther. 1994;62:325-372.
Gutiérrez JM, Rucavado A. Snake venom metalloproteinases: Their role in the pathogenesis of local tissue damage. Biochimie 2000;82:841-850.
Imai K, Nikai T, Sugihara H, Ownby CL. Hemorrhagic toxin from the venom of Agkistrodon bilineatus (common cantil). int J Biochem 1989;21:667-673.
Lomonte B, Gutierrez JM, Borkow G, Ovadia M, Tarkowski A, Hanson LA. Activity of hemorrhagic metalloproteinase BaH- 1 and myotoxin II from Bothrops asper snake venom on capillary endothelial cells in vitro. Toxicon 1994;32:505-510.
Franceschi A, Rucavado A, Mora N, Gutiérrez JM. Purification and characterization of BaH4, a hemorrhagic metalloproteinase from the venom of the snake Bothrops asper. Toxicon 2000;38:63-78.
Ownby CL, Nikai T, Imai K, Sugihara H. Pathogenesis of hemorrhage induced by bilitoxin, a hemorrhagic toxin isolated from the venom of the common cantil (Agkistrodon bilineatus bilineatus). Toxicon 1990;28:837-846.
Nikai T, Taniguchi K, Komori Y, Masuda K, Fox JW, Sugihara H. Primary structure and functional characterization of bilitoxin- 1, a novel dimeric P-II snake venom metalloproteinase from Agkistrodon bilineatus venom. Arch Biochem Biophys 2000;378:6-15.
Bajwa SS, Kirakossian H, Reddy KN, Markland FS. Thrombin-like and fibrinolytic enzymes in the venoms from the Gaboon viper (Bitis gabonica), eastern cottonmouth moccasin (Agkistrodon p. piscivorus) and southern copperhead (Agkistrodon c. contortrix) snakes. Toxicon 1982;20:427-32.
Komori Y, Nikai T, Ohara A, Yagihashi S, Sugihara H. Effect of bilineobin, a thrombin-like proteinase from the venom of common cantil (Agkistrodon bilineatus). Toxicon 1993;31:257-270.
Estevao-Costa MI, Diniz CR, Magalhaes A, Markland FS, Sanchez EF. Action of metalloproteinases mutalysin I and II on several components of the hemostatic and fibrinolytic systems. Thromb Res 2000;99:363-76.
Sanchez EF, Costa ME, Chavez Olortegui C, Assakura MT, Mandelbaum FR, Diniz CR. Characterization of a hemorrhagic factor, LHF- 1, isolated from the Bushmaster snake (Lachesis muta muta) venom. Toxicon 1995;33:1653-1667.
Sanchez EF, Santos CI, Magalhaes A, Diniz CR, Figueiredo S, Gilroy J, Richardson M. Isolation of a proteinase with plasminogen-activating activity from Lachesis muta muta (buslirnaster) snake venom. Arch Biochem Biophys 2000;378:131-41.
Datta G, Dong A, Witt J, Tu AT. Biochemical characterization of basilase, a new fibrinolytic enzyme from Crotalus basiliscus basiliscus. Arch Biochem Biophys 1995;317:365-373.
Ramirez MS, Sanchez EE, Garcia-Prieto C, Perez JC, Chapa GR, McKeller MR, Ramirez R, De Anda Y. Screening for fibrinolytic activity in eight Viperid venoms. Comp Biochem Physiol C 1999;124:91-98.
Retzios AD, Markland FS Jr. A direct-acting fibrinolytic enzyme from the venom of Agkistrodon contortrix contortrix: effects on various components of the human blood coagulation and fibrinolysis systems. Thromb Res 1988;52:541-552.
Willis TW, Tu AT. Purification and biochemical characterization of atroxase, a non hemorrhagic fibrinolytic protease from Western diamondback rattlesnake venom. Biochemistry 1988;27:4769-4777
Markland FS. Snake venoms and the hemostatic system. Toxicon 1998;36:1749-1800.
Maruyama M, Sugiki M, Yoshida E, Shimaya K, Mihara. Broad substrate specificity of snake venom fibrinolytic enzymes: possible role in haemorrhage. Toxicon 1992;30:1387-1397
Markland FS, Perdon A. Comparison of two methods for proteolitic enzyme detection in snake venom. Toxicon 1986;24:385-393.
Markland FS. Crotalase. Method of Enzymology 1976;45:223-236.
Chippaux JP, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon 1991;29:1279-1303.
Fletcher JE, Jiang MS. Lys49 phospholipase A2 lyse cell cultures by two distinct mechanisms. Toxicon 1998;36:1549-1556.
Gutiérrez JM, Lomonte B. Phospholipase A2 myotoxins from Bothrops snake venoms. Toxicon 1995;33:1405-1424.
Queiroz LS, Petta CA. Histopathological changes caused by venom of urutu snake (Bothrops alternatus) in mouse skeletal muscle. Rev Inst Med Trop Sao Paulo 1984;26:247-253.
Queiroz LS, Santo Neto H, Rodriguez-Simioni L, Prado-Franceschi J. Muscle necrosis and regeneration after envenomation by Bothrops jararacussu snake venom. Toxicon 1984;22:339-346.
Mebs D, Ownby CL. Myotoxic components of snake venoms: their biochemical and biological activities. Pharmacol Ther 1990;48:223-236.
Saravia P, Rojas E, Arce V, Guevara C, Lopez JC, Chaves E, Velasquez R, Rojas G, Gutierrez JM. Geographic and ontogenic variability in the venom of the neotropical rattlesnake Crotalus durissus: pathophysiological and therapeutic implications. Rev Biol Trop 2002;50:337-346.
de Roodt AR. Estudio Inmunobiológico del Veneno de Serpientes de Importancia Sanitaria de la Argentina, Tesis Doctoral, Facultad de Farmacia y Bioquímica de la Universidad de Buenos Aires, 2002.