2013, Número 4
Siguiente >>
Biotecnol Apl 2013; 30 (4)
Compuestos inorgánicos como adyuvantes de vacunas
Paneque-Quevedo AA
Idioma: Español
Referencias bibliográficas: 92
Paginas: 243-249
Archivo PDF: 368.39 Kb.
RESUMEN
La propiedad adyuvante de los minerales fue descubierta en 1926, al observarse que una suspensión de toxoide diftérico precipitado con sulfato doble de aluminio y potasio proveía de una inmunogenicidad notablemente superior al toxoide sin adyuvante. Desde entonces se han evaluado numerosas sales inorgánicas como adyuvantes de vacunas y las únicas aprobadas para su uso en seres humanos son la alúmina, el fosfato e hidróxido de aluminio y el sulfato de hidroxifosfato de aluminio. El fosfato de calcio se ha utilizado en algunas vacunas europeas. Las propiedades
adyuvantes de las sales inorgánicas son muy dependientes del proceso de obtención e inciden sobre los efectos depósito y presentador atribuidos a estas. La no observancia de ello ha conducido al rechazo de muchas sales con mejores propiedades adyuvantes que las tradicionales sales de aluminio. La aplicación de los últimos avances de la nanotecnología y la alternativa de combinar adyuvantes han motivado la síntesis y evaluación de nuevos adyuvantes. En esta revisión se describen los adyuvantes inorgánicos citados con mayor frecuencia y sus potencialidades para el desarrollo de vacunas más eficaces que las que poseen sales de aluminio como adyuvantes.
REFERENCIAS (EN ESTE ARTÍCULO)
Chang L. Industrial mineralogy: materials, processes, and uses. New Jersey: Prentice-Hall; 2001.
Carretero MI, Pozo M. Clay and nonclay minerals in the pharmaceutical and cosmetic industries. Part II. Active ingredients. Appl Clay Sci. 2010;47:171-81.
Reinke CM, Breitkreutz J, Leuenberger H. Aluminium in over-the-counter drugs risks outweigh benefi ts? Drug Safety. 2003; 26(14):1011-25.
Harandi AM, Gwyn D, Olesen OF. Vaccine adjuvants: scientifi c challenges and strategic initiatives. Expert Rev Vaccines. 2009;8(3):293-8.
De Gregorio E, Tritto E, Rappuoli R. Alum adjuvanticity: Unraveling a century old mystery. Eur J Immunol. 2008;38: 2068-71.
Singh M, O’Hagan DT. Recent advances in vaccine adjuvants. Pharm Res. 2002;19(6):715-28.
Clements CJ, Griffi ths E. The global impact of vaccines containing aluminium adjuvants. Vaccine. 2002;20:24-33.
Gupta RK. Aluminium compounds as vaccine adjuvants. Adv Drug Deliv Rev. 1998;32: 155-72.
Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol. 2009;9:287-93.
Lahiri A, Das P, Chakravortty D. Engagement of TLR signaling as adjuvant: Towards smarter vaccine and beyond. Vaccine. 2008;26:6777-83.
Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009;21(4):317-37.
Tagliabue A, Rappuoli R. Vaccine adjuvants: the dream becomes real. Hum Vaccine. 2008;4(5):347-9.
Lindblad EB. Aluminium adjuvants-in retrospect and prospect. Vaccine. 2004;22: 3658-68.
Glenny AT, Buttle GAH, Stevens MF. Rate of disappearance of diphtheria toxoid injected into rabbits and guinea-pigs: toxoid precipitated with alum. J Pathol. 1931;34:267-75.
Holt LB. Developments in diphtheria prophylaxis. London: William Heinemann, Ltd.; 1950.
Ramanathan VD, Badenoch-Jones P, Turk JL. Complement activation by aluminium and zirconium compounds. Immunology. 1979;37:881-8.
Harris J, Sharp FA, Lavelle Ed. C. The role of infl ammasomes in the immunostimulatory effects of particulate vaccine adjuvants. Eur J Immunol. 2010;40:595- 653.
Shar AF, Ruane D, Claass B, Creagh E, Harris J, et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 infl ammasome. Proc Natl Acad Sci USA. 2009;106(3):870-5.
Esch HH. Mechanisms of stimulation of the immune response by aluminum adjuvants. Vaccine. 2002;20:S34-S39.
Davenport FM, Hennessy AV, Askin FB. Lack of adjuvant effect of AlPO4 on purifi ed infl uenza virus hemagglutinins in man. J Immunol. 1968;100(5):1139-40.
Cvjetanovic B, Uemura K. The present status of fi eld and laboratory studies of typhoid and paratyphoid vaccines. Bull WHO. 1965;32:29-36.
Francis MJ, Fry CM, Rowlands DJ, Bittle JL, Houghten RA, Lerner RA, et al. Immune response to uncoupled peptides of footand- mouth disease virus. Immunology. 1987;61:1-6.
Bomford R. Aluminium salts: perspectives in their use as adjuvants. In: Gregoriadis G, Allison AC, Poste G, editors. Immunological adjuvants and vaccines. New York: Plenum Publishing Corp.; 1989. p. 35-41.
Francis MJ, Fry CM, Rowlands DJ, Brown F, Bittle JL, Houghten RA, et al. Immunological priming with synthetic peptides of foot-and-mouth disease virus. J Gen Virol. 1985;66:2347-54.
Lew AM, Anders RF, Edwards SJ, Langford CJ. Comparison of antibody avidity and titre elicited by peptide as a protein conjúgate or as expressed in vaccinia. Immunology. 1988;65(2):311-4.
Geerligs HJ, Weijer WJ, Welling GW, Welling-Wester S. The infl uence of different adjuvants on the immune response to a synthetic peptide comprising amino acid residues 9-21 of herpes simplex virus Type 1. J Immunol Methods. 1989;124(1):95-102.
Tripathy T, Ranjan D . Flocculation: A New Way to Treat the Waste Water. J Phys Sci. 2006;10:93-127.
World Health Organization. Temperature sensitivity of vaccines. WHO/ IVB/06.10. Geneva: World Health Organization; 2006.
Rinella JV, White JL, Hem SL. Effect of pH on the Elution of Model Antigens from Aluminum-Containing Adjuvants. J Colloid Interface Sci. 1995;205(1):161-5.
Al-Shakhshir R, Regnier F, White JL, Hem SL. Effect of protein adsorption on the surface charge characteristics of aluminium-containing adjuvants. Vaccine. 1994;12(5):472-4.
Al-Shakhshir R, Lee AL, White JL, Hem SL. Interactions in Model Vaccines Composed of Mixtures of Aluminum- Containing Adjuvants. J Colloid Interface Sci. 1995;169:197-203.
Seeber SJ, White JL, Hem SL. Predicting the adsorption of proteins by aluminiumcontaining adjuvants. Vaccine. 1991;9(3): 201-3.
Clapp T, Siebert P, Chen D, Braun LJ. Vaccines with Aluminum-Containing Adjuvants: Optimizing Vaccine Efficacy and Thermal Stability. J Pharm Sci. 2011; 100(2):388-401.
Peek JL, Russell Middaugh C, Berkland C. Nanotechnology in vaccine delivery. Adv Drug Deliv Rev. 2008;60:915-28.
Jones LS, Peek LJ, Power J, Markham A, Yazzie B, Middaugh R. Effects of Adsorption to Aluminium Salt Adjuvants on the Structure and Stability of Model Protein Antigens. J Biol Chem. 2005;280(14): 13406-14.
Lindblad EB. Aluminium compounds for use in vaccines. Immunol Cell Biol. 2004;82,497-505.
Baylor NW, Egan W, Richman P. Aluminum salts in vaccines-US perspective. Vaccine. 2002;20:S18-S23.
Clausi A, Cummiskey J, Merkley S, Carpenter J, Braun LJ, Randolph TW. Influence of particle size and antigen binding on effectiveness of aluminum salt adjuvants in a model lysozyme vaccine. J Pharm Sci. 2008;97(12):5252-62.
Shirodkar S, Hutchinson RL, Perry DL, White JL, Hem SL. Aluminum compounds used as adjuvants in vaccines. Pharm Res. 1990;7(12):1282-8.
Burrell LS, Johnston CT, Schulze D, Klein J, White JL, Hem SL. Aluminum phosphate adjuvants prepared by precipitation at constant pH. Part I: composition and structure. Vaccine. 2001;19:275-81.
Burrell LS, Johnston CT, Schulze D, Klein J, White JL, Hem SL. Aluminum phosphate adjuvants prepared by precipitation at constant pH. Part II: physicochemical properties. Vaccine. 2001;19:282-7.
Hem SL. Elimination of aluminum adjuvants. Vaccine. 2002;20:S40-S43.
Caulfi eld MJ, Shi L, Wang S, Wang B, Tobery TW, Henryck Mach, et al. Effect of Alternative Aluminum Adjuvants on the Absorption and Immunogenicity of HPV16 L1 VLPs in Mice. Hum Vaccines 2007;3(4)139-46.
Kawamura Y, Sawai Y. Study on Indian Cobra Venom toxoid. Snake. 1989; 21:6-8.
Kawamura Y, Sawai Y. Study on the immunogenicity of purifi ed toxoid of Siamese Cobra (Naja Naja kaouthia) Venom. Snake. 1989;21:81-4.
Stieneker F, Kersten G, van Bloois L, Crommelin DJ, Hem SL, Löwer J, et al. Comparison of 24 different adjuvants for inactivated HIV-2 split whole virus as antigen in mice. Induction of titres of binding antibodies and toxicity of the formulations. Vaccine. 1995;13(1):45-53.
Fujimaki H, Ozawa M, Imai T, Kubota K, Watanabe N. Adjuvant effects of aluminum silicate on IgE and IgG1 antibody production in mice. Int Arch Allergy Appl Immunol. 1984;75(4):351-6.
Arora S, Sharma S, Goel SK, Singh US. Effect of different adjuvants in equines for the production of equine rabies immunoglobulin. Natl Med J India. 2005;18(6): 289-92.
Basavalingappa BS, Krishnamurthy GV, Suryanarayana VVS, Byregowda SM, Isloor S, Mayanna A, et al. Immune response of sheep to bentonite clay and alum adjuvanted enterotoxaemia vaccines. Indian J Animal Sci. 2008;78(4):339-41.
Matheis W, Zott A, Schwanig M. The role of the adsorption process for production and control combined adsorbed vaccines. Vaccine. 2002;20:67-73.
De Oliveira EC, Moita JM, Fujiwara FY. Aluminum Polyphosphate Thermoreversible Gels: A Study by 31P and 27Al NMR Spectroscopy. J Colloid Interface Sci. 1995;176(2):388-96.
Teagarden DL, Kozlowski JF, White JL, Hem SL. Aluminum chlorohydrate I: Structure studies. J Pharm Sci. 1981;70(7): 758-61.
Coursaget P, Yvonnet B, Relyveld EH, Barres JL, Diop-Mar I, Chiron PJ. Simultaneous administration of diphtheriatetanus- pertussis-polio and hepatitis B vaccines in a simplified immunisalion programme: immune response to diphtheria toxoid, tetanus toxoid, pertussis and hepatitis B surface antigens. Infect Immun. 1986;51(3)784-7.
Relyveld EH. A history of toxoids. In: Plotkin SA, Fantini B, editors. Vaccinia, vaccination, vaccinology. New York: Elsevier; 1996. p. 95.
Relyveld EH, Hi-Nocq E, Raynaud M. Etude de la vaccination antidiphterique de sujets allergiques, avec une anatoxine pure adsorbee sur phosphate de calcium. Bull World Health Org. 1964;30:321-5.
Gupta RK, Siber GR. Comparison of adjuvant activities of aluminium phosphate, calcium phosphate and stearyl tyrosine for tetanus toxoid. Biologicals. 1994;22(1):53-63.
Jiang D, Premachandra GS, Johnston C, Hem SL. Structure and adsorption properties of commercial calcium phosphate adjuvant. Vaccine. 2004;23:693-8.
Relyveld EH. Preparation and use of calcium phosphate adsorbed vaccines. Dev Biol Stand. 1986;65:131-6.
He Q, Mitchell AR, Johnson SL, Wagner- Bartak C, Morcol T, Bell SJD. Calcium phosphate nanoparticle adjuvant. Clin Diagn Lab Immunol. 2000;7(6):899-903.
Abd el-Razek NEE, Shoman SA, Mohamed AF. Nanocapsulated Rift Valley Fever vaccine candidates and relative immunological and histopathological reactivity in out bred Swiss mice. J Vaccines Vaccin. 2011;2:115.
He Q, Mitchell A, Morcol T, Bell SJ. Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clin Diagn Lab Immunol. 2002;9(5):1021-4.
Contorni M, Singh M, Derek O’Hagan D, inventors; Novartis, assignee. Compositions with antigens adsorbed to calcium phosphate. United States patent US 20090035326. 2009 Feb 5.
Sterne M, Trim G. Enhancement of the potency of typhoid vaccines with calcium alginate. J Med Microbiol. 1970;3(4): 649-54.
Shapiro A, Modai Y, Kohn A. Effi cacies of vaccines containing alginate adjuvant. J Appl Microbiol. 1967;30(2):304-11.
Kohn A, Helering I, Ben-Efraim S. Adjuvant properties of alginate in bacterial, viral and protein vaccines. Int Arch Allergy Appl Immunol. 1969;36(1-2):156-62.
Mannino RJ, Canki M, Feketeova E, Scolpino AJ, Wang Z, Zhang F, et al. Targeting immune response induction with cochleate and liposome-based vaccines. Adv Drug Deliv Rev. 1998;32(3):273-87.
Patel GB, Zhou H, Ponce A, Chen W. Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines. Vaccine. 2007;25(51):8622-36.
Lambrecht BN, Kool M, Willart M, Hammad H. Mechanism of action of clinically approved adjuvants. Curr Opin Immunol. 2009;21:23-9.
Munks MW, McKee AS, Macleod MK, Powell RL, Degen JL, Reisdorph NA, et al. Aluminum adjuvants elicit fi brin-dependent extracellular traps in vivo. Blood. 2010;116(24):5191-9.
Kristensen N, Uldal J, Aasmul-Olsen S, Lund L, inventors; ALK-Abello A/S, assignee. Parenteral vaccine formulations and uses thereof. United States patent US 7785611 B2. 2010 Aug 31.
Sauzeat E, inventor; Sanofi Pasteur S.A., assignee. Vaccine composition comprising iron phosphate as vaccine adjuvant. United States patent US 06927235. 2005 Aug 9.
Eibl J, Leibl H, Mannhalter J, inventors; Tempo G, assignee. Adjuvant based on colloidal iron compounds. United States patent US 5895653. 1999 Apr 20.
Leibl H, Tomasits R, Brühl P, Kerschbaum A, Eibl MM, Mannhalter JW. Humoral and cellular immunity induced by antigens adjuvanted with colloidal iron hydroxide. Vaccine. 1999;17(9-10):1017-23.
Levine S, Sowinski R.Carbonyl iron: a new adjuvant for experimental autoimmune diseases. J Immunol. 1970;105(6): 1530-5.
Matsumura M, Nagata M, Nakamura K, Kawai M, Baba T, Yamaki K, et al. Adjuvant effect of cinc oxide on Th2 but not Th1 immune responses in mice. Immunopharmacol Immunotoxicol. 2010; 32(1):56-62.
Li T. Zinc hydroxide as a new vaccine adjuvant enhance the humoral immune response of HAV antigen [Master Dissertation]. Beijing: Peking Union Medical College; 2008.
Torvi J, Dambal SS, Indumati V. Effect of adjuvant oral zinc sulphate therapy in psoriasis patients. Int J Med Res. 2010;1(2): 106-10.
Dieter B, inventor; Behringwerke Aktiengesellschaft, assignee. Solutions containing antigen and cinc hydroxide or iron hydroxide as an adjuvant and processes for preparing such solutions. United States patent US 5252327. 1993 Oct 12.
Rogers RR, Garner RJ, Riddle MM, Luebke RW, Smialowicz RJ. Augmentation of murine natural killer cell activity by manganese chloride. Toxicol Appl Pharmacol. 1983;70(1):7-17.
Smialowicz RJ, Luebke RW, Rogers RR, Riddle MM, Rowe DG. Manganese chloride enhances natural cell-mediated immune effector cell function: Effects on macrophages. Immunopharmacology. 1985;9(1):1-11.
Smialowicz RJ, Rogers RR, Riddle MM, Luebke RW, Rowe DG, Garner RJ. Manganese chloride enhances murine cell-mediated cytotoxicity: effects on natural killer cells. J Immunopharmacol. 1984;6(1-2):1-23.
Shima S, Morita K, Tachikawa S, Ito T, Kurita H, Yoshida T, et al. IgM Antibody Production in Mice Intraperitoneally Injected with Zirconium Oxychloride. Br J Ind Med. 1987;44(9):633-7.
Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007; 28(31):4600-7.
Lee JY, Atochina O, King B, Taylor L, Elloso M, Scott P, et al. Beryllium, an adjuvant that promotes gamma interferon production. Infect Immun. 2000;68(7):4032-9.
Hall JG. Studies on the adjuvant action of beryllitnn. IV. The preparation of beryllitnn containing macromolecules that induce immunoblast responses in vivo. Immunology. 1988;64:345-51.
Naim JO, van Oss CJ, Wu W, Giese RF, Nickerson PA. Mechanisms of adjuvancy: I-Metal oxides as adjuvants. Vaccine. 1997; 15(11):1183-93.
Cooper PD. Vaccine adjuvants based on gamma inulin. Pharm Biotechnol. 1995;6: 559-80.
Didierlaurent AM, Morel S, Lockman L, Giannini SL, Bisteau M, Carlsen H, et al. AS04, an aluminum salt- and TLR4 agonistbased adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol. 2009;183(10):6186-97.
Li H, Willingham SB, Ting JP, Re F. Cutting Edge: Infl ammasome activation by Alum and Alum’s adjuvant effect are mediated by NLRP3. J Immunol. 2008;181(1):17-21.
Aucouturier J, Ganne V, Trouve G, inventors; Societe d’Exploitation de Produits pour les Industries Chimiques, assignee. Vaccine composition of surfactants as adjuvant of immunity. United States patent US 7422748. 2008 Sep. 9.
Paneque A. El uso de las sales de aluminio como adyuvantes. IV International Symposium on Chemistry, 2010 Jun 1-4, Santa Clara, Cuba.
Paneque A. Compuestos inorgánicos como adyuvantes. 8th International Congress on Chemistry, Chemical Engineering and Biochemistry, 2012 Oct 9-12, La Habana, Cuba.