2013, Número 3
<< Anterior Siguiente >>
Biotecnol Apl 2013; 30 (3)
Procedimiento de conjugación del polisacárido capsular de Streptococcus pneumoniae serotipo 6B a toxoide tetánico
Soubal JP, Peña L, Santana D, Valdés Y, García D, Pedroso J, Cardoso F, González H, Fernández V, Vérez V
Idioma: Español
Referencias bibliográficas: 39
Paginas: 199-215
Archivo PDF: 272.93 Kb.
RESUMEN
Anualmente
Streptococcus pneumoniae provoca 826 mil muertes de niños menores de cinco años. El estudio del serotipo 6B, uno de los de mayor incidencia, es uno de los objetivos del proyecto de investigación-desarrollo para obtener una vacuna conjugada en Cuba. La estrategia de conjugación del polisacárido capsular del serotipo 6B (PS6B) fue fragmentarlo mediante hidrólisis ácida, activarlo mediante oxidación con peryodato y conjugarlo a toxoide tetánico (TT) mediante aminación-reductiva. Existe poca información sobre cómo estas modificaciones afectan las características físico-químicas y antigénicas del polisacárido, en particular para PS6B, a pesar de ser el
menos inmunogénico de los polisacáridos de
S. pneumoniae. En tal sentido, se estableció un procedimiento para obtener conjugados inmunogénicos de PS6B a TT. Se crearon condiciones de reacción para obtener el polisacárido en tres rangos de tallas y niveles de oxidación. Se determinó que la fragmentación del polisacárido por debajo de 10 kDa y la oxidación de más del 24 % de las unidades repetitivas implican pérdida de antigenicidad. La talla del polisacárido tuvo impacto en las características físico-químicas de los conjugados en las condiciones evaluadas; no así el nivel de oxidación. A diferencia del polisacárido nativo, conjugados de PS6B de 10 a 30 kDa y 30 a 100 kDa fueron inmunogénicos en conejos, con evidencias de respuesta timo-dependiente. Los procedimientos que incluyen la obtención del PS6B de 10 a 30 kDa y 30 a 100 kDa con niveles de oxidación entre 8 y 18 % de las unidades
repetitivas oxidadas, permitieron obtener conjugados a TT reproducibles e inmunogénicos.
REFERENCIAS (EN ESTE ARTÍCULO)
O’Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009; 374(9693):893-902.
González-Fernández A, Faro J, Fernández C. Immune renponses to polysaccharides: Lessons from humans and mice. Vaccine. 2008;26:292-300.
Lucas AH, Rittenhouse-Olson K, Kronenberg M, Apicella MA, Wang D, Schreiber JR, et al. Carbohydrate moieties as vaccine candidates: Meeting summary. Vaccine. 2010;28(4):1121-31.
Overturf GD. American Academy of Pediatrics. Committee on Infectious Diseases. Technical report: prevention of pneumococcal infections, including the use of pneumococcal conjugate and polysaccharide vaccines and antibiotic prophylaxis. Pediatrics. 2000;106(2 Pt 1):367-76.
Organización Panamericana de la Salud. Informe Regional de SIREVA II: datos por país y por grupos de edad sobre las características de los aislamientos de Streptococcus pneumoniae, Haemophilus influenzae y Neisseria meningitidis en procesos invasores, 2000-2005. Documentos Técnicos. Tecnologías Esenciales de Salud. THS/EV-2007/002.
Rodgers GL, Arguedas A, Cohen R, Dagan R. Global serotype distribution among Streptococcus pneumoniae isolates causing otitis media in children: Potential implications for pneumococcal conjugate vaccines. Vaccine. 2009;27:3802-10.
Oosterhuis-Kafeja F, Beutels P, Van Damme P. Immunogenicity, effi cacy, safety and effectiveness of pneumococcal conjugate vaccines (1998-2006). Vaccine. 2007; 25(12):2194-212.
Rückinger S, Dagan R, Albers L, Schönberger K, von Kries R. Immunogenicity of pneumococcal conjugate vaccines in infants after two or three primary vaccinations: a systematic review and metaanalysis. Vaccine. 2011;29(52):9600-6.
Kenne L, Lindberg B, Madden J. Structural studies of the capsular antigen from Streptococcus pneumonia Type 26. Carbohydr Res. 1979;73:175-82.
Sun Y, Park MK, Diamond B, Solomon A, Nahm MH. Repertoire of human antibodies against the polysaccharide capsule of Streptococcus pneumoniae serotype 6B. Infect Immun. 1999;67:1172-9.
Peeters CC, Lagerman PR, de Weers O, Oomen LA, Hoogerhout P, Beurret M, et al. Preparation of polysaccharideconjugate vaccines. Methods Mol Med. 2003;87:153-74.
Brückner J. Estimation of monosaccharides by the orcinol-sulphuric acid reaction. Biochem J. 1955;60(2):200-5.
Porro M, Viti S, Antoni G, Neri P. Modifi cations of the Park-Johnson Ferricyanide submicromethod for the assay of reducing groups in carbohydrates. Anal Biochem. 1981;118:301-6.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193:265-75.
van Dam JE, Breg J, Komen R, Kamerling JP, Vliegenthart JF. Isolation and structural studies of phosphate-containing oligosaccharides from alkaline and acid hydrolysates of Streptococcus pneumoniae type 6B capsular polysaccharide. Carbohydr Res. 1989;187(2):267-86.
Chang J, Serrano Y, Garrido R, Rodríguez LM, Pedroso J, Cardoso F, et al. Relevance of O-acetyl and phosphoglycerol groups for the antigenicity of Streptococcus pneumoniae serotype 18C capsular polysaccharide. Vaccine. 2012; 30(49):7090-6.
Anttila M, Eskola J, Ahman H, Käyhty H. Avidity of IgG for Streptococcus pneumoniae type 6B and 23F polysaccharides in infants primed with pneumococcal conjugates and boosted with polysaccharide or conjugate vaccines. J Infect Dis. 1998; 177(6):1614-21.
Abeygunawardana C, Williams TC, Summer JS, Hennessey JP. Development and validation of an NMR-based identity assay for bacterial polysaccharides. Anal Biochem. 2000;279:226-40.
Kamerling J. Pneumococcal Polysaccharides: A Chemical View. In: Streptococcus pneumoniae. Molecular biology & mechanisms of disease. New York: Mary Ann Liebert, Inc.; 1999. p.81-112.
Hausdorff WP, Siber JR, Paradiso PR, inventors; Wyeth Lederley, Inc., assignee. Multivalent pneumococcal polysaccharideprotein conjugate composition. US patent US 0130137. 2009 may 21.
Bröker M, Dull PM, Rappuoli R, Costantino P. Chemistry of a new investigational quadrivalent meningococcal conjugate vaccine that is immunogenic at all ages. Vaccine. 2009;27:5574-80.
Rodríguez ME, van den Dobbelsteen GP, Oomen LA, de Weers O, van Buren L, Beurret M, et al. Immunogenicity of Streptococcus pneumoniae type 6B and 14 polysaccharide-tetanus toxoid conjugates and the effect of uncoupled polysaccharide on the antigen-specifi c immune response. Vaccine. 1998;16(20):1941-9.
Wessels MR, Muñoz A, Kasper DL. A model of high-affi nity antibody binding to type III group B Streptococcus capsular polysaccharide. Proc Natl Acad Sci USA. 1987;84(24):9170-4.
Zou W, Mackenzie R, Thérien L, Hirama T, Yang Q, Gidney MA, et al. Conformational epitope of the type III group B Streptococcus capsular polysaccharide. J Immunol. 1999;163(2):820-5.
Moore SL, Uitz C, Ling CC, Bundle DR, Fusco PC, Michon F. Epitope specifi cities of the group Y and W-135 polysaccharides of Neisseria meningitidis. Clin Vaccine Immunol. 2007;14(10):1311-7.
Wessels MR, Kasper DL. Antibody Recognition of the type 14 pneumococcal capsule. evidence of conformational epitope in a neutral polysaccharide. J Exp Med. 1989;169(6): 2121-31.
Mawas F, Niggemann J, Jones C, Corbel MJ, Kamerling JP, Vliegenthart JF. Immunogenicity in a mouse model of a conjugate vaccine made with a synthetic single repeating unit of type 14 pneumococcal polysaccharide coupled to CRM197. Infect Immun. 2002; 70(9):5107-14.
Laferriere CA, Sood RK, de Muys JM, Michon F, Jennings HJ. Streptococcus pneumoniae type 14 polysaccharide-conjugate vaccines: length stabilization of opsonophagocytic conformational polysaccharide epitopes. Infect Immun. 1998;66(6):2441-6.
Kim JS, Laskowich ER, Michon F, Kaiser RE, Arumugham RG. Monitoring activation sites on polysaccharides by GC-MS. Anal Biochem. 2006;358(1):136-42.
Gudlavalleti SK, Lee CH, Norris SE, Paul- Satyaseela S, Vann WF, Frasch CE. Comparison of Neisseria meningitidis serogroup W135 polysaccharide-tetanus toxoid conjugate vaccines made by periodate activation of O-acetylated, non-O-acetylated and chemically de-O-acetylated polysaccharide. Vaccine. 2007;25(46):7972-80.
Wessels MR, Paoletti LC, Guttormsen HK, Michon F, D’Ambra AJ, Kasper DL. Structural properties of group b streptococcal type III polysaccharide conjugate vaccines that infl uence immunogenicity and effi cacy. Infect Immun. 1998;66(5):86-2192.
Michon F, Uitz C, Sarar A, D’Ambra AJ, Laude-Sharp M, Moore S, Fusco PC. Group B Streptococcal Type II and III Conjugate Vaccines. Physicochemical Properties that Infl uence Immunogenicity. Clin Vaccine Immunol. 2006;13(18):936-43.
Wuorimaa T, Dagan R, Väkeväinen M, Bailleux F, Haikala R, Yaich M, et al. Avidity and subclasses of IgG after immunization of infants with an 11-valent pneumococcal conjugate vaccine with or without aluminum adjuvant. J Infect Dis. 2001;184(9):1211-5.
Usinger WR, Lucas AH. Avidity as a determinant of the protective effi cacy of human antibodies to pneumococcal capsular polysaccharides. Infect Immun. 1999;67:2366-70.
Daum RS, Hogerman D, Rennels MB, Bewley K, Malinoski F, Rothstein E, et al. Infant immunization with pneumococcal CRM197 vaccines: effect of saccharide size on immunogenicity and interactions with simultaneously administered vaccines. J Infect Dis. 1997; 176(2):445-55.
An SJ, Yeon YK, Kothari S, Kothari N, Kim JA, Lee E, et al. Physico-chemical properties of Salmonella typhi Vi polysaccharide-diftheria toxoid conjugate vaccines affect immunogenicity. Vaccine. 2011;29(44):7618-23.
Dick WE Jr, Beurret M. Glycoconjugates of bacterial carbohydrate antigens. A survey and considerations of design and preparation factors. Contrib Microbiol Immunol. 1989; 10:48-114.
Laferrière CA, Sood RK, de Muys JM, Michon F, Jennings HJ. The synthesis of Streptococcus pneumoniae polysaccharide-tetanus toxoid conjugates and the effect of chain length on immunogenicity. Vaccine. 1997; 5(2):179-86.
Mäkelä O, Péterfy F, Outschoorn IG, Richter AW, Seppälä I. Immunogenic properties of alpha (1→6) dextran, its protein conjugates, and conjugates of its breakdown products in mice. Scand J Immunol. 1984;19(6):541-50.