2013, Número s1
<< Anterior Siguiente >>
Arch Neurocien 2013; 18 (s1)
Participación de las células T reguladoras en la cisticercosis experimental murina por taenia crassiceps
Ruiz-Monroy NM, López-Roblero A, Nájera-Ocampo M, Camacho-Vázquez C, Arce-Sillas A, Casanova-Hernández D, Palafox-Fonseca H, Melo-Salas M, Fragoso G, Sciutto-Conde E, Adalid-Peralta L
Idioma: Español
Referencias bibliográficas: 32
Paginas: 33-37
Archivo PDF: 192.65 Kb.
RESUMEN
Objetivo: determinar el papel de las células T reguladoras
(Treg) durante la infección del cisticerco de
taenia
crassiceps en ratones C57BL/6.
Material y métodos: se
emplearon ratones hembras de 4 a 5 semanas de edad,
de la cepa C57BL/6J. Se formaron dos grupos de
ratones; se inoculó a cada ratón del
grupo I por vía
intraperitoneal con 20 cisticercos; el
grupo II, sin infectar,
se empleó como control. A diferentes tiempos de
infección (5, 30, 90 y 130 días) se determinó el nivel
de células Treg en el peritoneo, ganglios mesentéricos,
placas de Peyer y el bazo. Paralelamente se evaluó la
capacidad proliferativa de las células del bazo, estimulándolas
con concanavalina A (ConA) y antígenos de
T.
crassiceps. Resultados: se observó que los niveles de
Tregs fueron similares entre el grupo control y el infectado
en el sitio de instalación del parásito (peritoneo) durante el
periodo de estudio. Al mismo tiempo, se observaron
niveles similares de proliferación en ambos grupos
cuando las células se estimularon con ConA. Los antígenos
específicos de cisticerco no indujeron proliferación
de células T efectoras ni de Tregs. Estos resultados
demuestran que el parásito
T. crassiceps promueve una
disminución en la capacidad proliferativa de linfocitos T,
que es independiente de células Treg antígenoespecíficas.
Conclusiones: la resistencia a la infección
por el cisticerco de
T. crassiceps en ratones de la cepa
C57BL/6 no está asociada a presencia de células Treg.
REFERENCIAS (EN ESTE ARTÍCULO)
Kroeze WK, Freeman RS. Taenia crassiceps: fate of cysticerci following ingestion by the mouse. Exp Parasitol 1982;54:425-31.
Larralde C, Sciutto E, Huerta L, Terrazas I, Fragoso G, Trueba L, et al. Experimental cysticercosis by Taenia crassiceps in mice: factors involved in susceptibility. Acta Leiden 1989; 57: 131-4.
Zurabian R, Aguilar L, Jimenez JA, Robert L, Willms K. Evagination and infectivity of Taenia crassiceps cysticerci in experimental animals. J Parasitol 2008;94:1-6.
Willms K, Zurabian R. Taenia crassiceps: in vivo and in vitro models. Parasitology 2010;137:335-46.
Smith JK, Esch GW, Kuhn RE. Growth and development of larval Taenia crassiceps (cestoda). I. Aneuploidy in the anomalous ORF strain. Int J Parasitol 1972; 2: 261-3.
Morales-Montor J, Escobedo G, Vargas-Villavicencio JA, Larralde C. The neuroimmunoendocrine network in the complex host-parasite relationship during murine cysticercosis. Curr Top Med Chem 2008;8:400-7.
Terrazas LI. The complex role of pro- and anti-inflammatory cytokines in cysticercosis: immunological lessons from experimental and natural hosts. Curr Top Med Chem 2008; 8: 383-92.
Ramirez-Aquino R, Radovanovic I, Fortin A, Sciutto-Conde E, Fragoso-Gonzalez G, Gros P, et al. Identification of loci controlling restriction of parasite growth in experimental taenia crassiceps cysticercosis. PLoS Negl Trop Dis 2011; 5: e1435.
Sciutto E, Fragoso G, Hernandez M, Rosas G, Martínez JJ, Fleury A, et al. Development of the S3pvac Vaccine against Murine Taenia crassiceps cysticercosis: a historical review. J Parasitol 2013.
Smith JK, Parrish M, Esch GW, Kuhn RE. Growth and development of larval Taenia crassiceps (Cestoda)-II. RNA and DNA synthesis in the ORF and KBS strains determined by autoradiography. Int J Parasitol 1972;2:383-9.
Fragoso G, Lamoyi E, Mellor A, Lomeli C, Hernández M, Sciutto E. Increased resistance to Taenia crassiceps murine cysticercosis in Qa-2 transgenic mice. Infect Immun 1998; 66:760-4.
Larralde C, Sotelo J, Montoya RM, Palencia G, Padilla A, Govezensky T, et al. Immunodiagnosis of human cysticercosis in cerebrospinal fluid. Antigens from murine Taenia crassiceps cysticerci effectively substitute those from porcine Taenia solium. Arch Pathol Lab Med 1990;114:926-8.
Jung H, Cárdenas G, Sciutto E, Fleury A. Medical treatment for neurocysticercosis: drugs, indications and perspectives. Curr Top Med Chem 2008;8:424-33.
Sciutto E, Fragoso G, Hernández M, Rosas G, Martínez JJ, Fleury A, et al. Development of the S3pvac Vaccine against Porcine Taenia solium cysticercosis: a historical review. J Parasitol 2013.
Sciutto E, Fragoso G, Larralde C. Taenia crassiceps as a model for Taenia solium and the S3Pvac vaccine. Parasite Immunol 2011; 33: 79-80.
López-Marín LM, Montrozier H, Lemassu A, García E, Segura E, Daffe M. Structure and antigenicity of the major glycolipid from Taenia solium cysticerci. Mol Biochem Parasitol 2002; 119: 33-42.
Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sánchez- Flores A, Brooks KL, et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature 2013;496:57-63.
Esquivel-Velazquez M, Larralde C, Morales J, Ostoa-Saloma P. Protein and antigen diversity in the vesicular fluid of Taenia solium cysticerci dissected from naturally infected pigs. Int J Biol Sci 2011;7:1287-97.
Restrepo BI, Aguilar MI, Melby PC, Teale JM. Analysis of the peripheral immune response in patients with neurocysticercosis: evidence for T cell reactivity to parasite glycoprotein and vesicular fluid antigens. Am J Trop Med Hyg 2001; 65: 366-70.
Chavarria A, Fleury A, García E, Marquez C, Fragoso G, Sciutto E. Relationship between the clinical heterogeneity of neurocysticercosis and the immune-inflammatory profiles. Clin Immunol 2005;116:271-8.
Verma A, Prasad KN, Cheekatla SS, Nyati KK, Paliwal VK, Gupta RK. Immune response in symptomatic and asymptomatic neurocysticercosis. Med Microbiol Immunol 2011;200:255-61.
da SRV, Manhani MN, Costa-Cruz JM. IgA detection in human neurocysticercosis using different preparations of heterologous antigen. Parasitol Res 2010;107:221-5.
de Aluja A, Vargas G. The histopathology of porcine cysticercosis. Vet Parasitol 1988;28:65-77.
Perez-Torres A, Ustarroz M, Constantino F, Villalobos N, de AA. Taenia solium cysticercosis: lymphocytes in the inflammatory reaction in naturally infected pigs. Parasitol Res 2002;88:150-2.
Alvarez JI, Colegial CH, Castano CA, Trujillo J, Teale JM, Restrepo BI. The human nervous tissue in proximity to granulomatous lesions induced by Taenia solium metacestodes displays an active response. J Neuroimmunol 2002;127:139-44.
Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 2010;10:490-500.
Wei G, Tabel H. Regulatory T cells prevent control of experimental African trypanosomiasis. J Immunol 2008; 180: 2514-21.
Hisaeda H, Maekawa Y, Iwakawa D, Okada H, Himeno K, Kishihara K, et al. Escape of malaria parasites from host immunity requires CD4+ CD25+ regulatory T cells. Nat Med 2004; 10: 29-30.
Adalid-Peralta L, Fleury A, Garcia-Ibarra TM, Hernández M, Parkhouse M, Crispin, JC, et al. Human neurocysticercosis: in vivo expansion of peripheral regulatory T cells and their recruitment in the central nervous system. J Parasitol 2011; 98: 142-8.
Fragoso G, Meneses G, Sciutto E, Fleury A, Larralde C. Preferential growth of Taenia crassiceps cysticerci in female mice holds across several laboratory mice strains and parasite lines. J Parasitol 2008; 94: 551-3.
Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks, DL. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 2002; 420: 502-7.
Wang X, Zhou S, Chi Y, Wen X, Hoellwarth J, He L, et al. CD4+CD25+ Treg induction by an HSP60-derived peptide SJMHE1 from Schistosoma japonicum is TLR2 dependent. Eur J Immunol 2009; 39: 3052-65.