2013, Número 6
<< Anterior Siguiente >>
Rev Med Inst Mex Seguro Soc 2013; 51 (6)
Desequilibrios cromosómicos en el cáncer cervicouterino
de los Santos-Munive V, Alonso-Avelino JÁ
Idioma: Español
Referencias bibliográficas: 39
Paginas: 644-649
Archivo PDF: 61.00 Kb.
FRAGMENTO
Para identificar los desequilibrios cromosómicos más
comunes en las lesiones tempranas y tardías del
cáncer cervicouterino que pudieran emplearse como
biomarcadores de progresión, se realizó una búsqueda
de artículos aparecidos entre 1996 y 2011 en
PubMed; los términos Mesh utilizados fueron
chromosomal
alterations, loss of heterozygosity, cervical
cáncer, cervical tumorigenesis, chromosomal aberrations,
cervical intraepithelial neoplasia y
low-grade
squamous intraepithelial lesion. Encontramos que
los desequilibrios cromosómicos comunes tanto en
las etapas tempranas como en las tardías ocurren
en 8q24 (77.7 %), 20q13 (66.9 %), 3q21-26 (47.1 %)
Xp22 (43.8 %) y 5p15 (60 %). Además, la integración
del genoma del virus del papiloma humano de
alto riesgo (VPH-AR) al cromosoma del hospedero se
ha relacionado con el desarrollo de la neoplasia, si
bien se considera que los desequilibrios cromosómicos
preceden y favorecen dicha integración. Los desequilibrios
cromosómicos en 8q24, 20q13, 3q21-26
Xp22 y 5p15 —determinados mediante hibridación in
situ con inmunofl uorescencia o hibridación genómica
comparativa— para la detección oportuna de la presencia
del VPH-AR son marcadores promisorios de
evolución del cáncer cervicouterino.
REFERENCIAS (EN ESTE ARTÍCULO)
Denny L. Cervical cancer: prevention and treatment. Discov Med. 2012;14(75):125-31.
Saslow D, Runowicz CD, Solomon D, Moscicki AB, Smith RA, Eyre HJ, et al. American Cancer Society guideline for the early detection of cervical neoplasia and cancer. CA Cancer J Clin. 2002;52(6):342-62.
Münger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004; 78(21):11451-60.
Crum CP, McLachlin CM. Cervical intraepithelial neoplasia. J Cell Biochem Suppl. 1995;23:71-9.
Morris M, Tortolero-Luna G, Malpica A, Baker VV, Cook E, Johnson E, et al. Cervical intraepithelial neoplasia and cervical cancer. Obstet Gynecol Clin North Am. 1996;23(2):347-410.
zur Hausen H. Papillomavirus infections--a major cause of human cancers. Biochim Biophys Acta. 1996;1288(2):F55-78.
Howie HL, Katzenellenbogen RA, Galloway DA. Papillomavirus E6 proteins. Virology. 2009;384(2): 324-34.
Larson AA, Liao SY, Stanbridge EJ, Cavenee WK, Hampton GM. Genetic alterations accumulate during cervical tumorigenesis and indicate a common origin for multifocal lesions. Cancer Res. 1997;57 (19):4171-6.
Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258(5083):818-21.
Liyanage M, Coleman A, du Manoir S, Veldman T, McCormack S, Dickson RB, et al. Multicolour spectral karyotyping of mouse chromosomes. Nat Genet. 1996;14(3):312-5.
Molina J, Guzmán-Bistoni C, Méndez V, Blasco-Olaetxea E, García-Tamayo J. Alteraciones cromosómicas en el cáncer del cuello uterino. Vitae Academia Biomédica Digital. 2005(25). Disponible en https:// tspace.library.utoronto.ca/bitstream/1807/9252/1/ va05015.pdf
Mian C, Bancher D, Kohlberger P, Kainz C, Haitel A, Czerwenka K, et al. Fluorescence in situ hybridization in cervical smears: detection of numerical aberrations of chromosomes 7, 3, and X and relationship to HPV infection. Gynecol Oncol. 1999;75(1):41-6.
Rao PH, Arias-Pulido H, Lu XY, Harris CP, Vargas H, Zhang FF, et al. Chromosomal amplifi cations, 3q gains and deletions of 2q33-q37 are the frequent genetic changes in cervical carcinoma. BMC Cancer. 2004;4:5. doi:10.1186/1471-2407-4-5. Disponible en http://www.biomedcentral.com/1471-2407/4/5
Sherwood JB, Shivapurkar N, Lin WM, Ashfaq R, Miller DS, Gazdar AF, et al. Chromosome 4 deletions are frequent in invasive cervical cancer and differ between histologic variants. Gynecol Oncol. 2000;79(1):90-6.
Backsch C, Rudolph B, Kühne-Heid R, Kalscheuer V, Bartsch O, Jansen L, et al. A region of human chromosome 4 (q35.1-->qter) induces senescence in cell hybrids and is involved in cervical carcinogenesis. Genes Chromosomes Cancer. 2005;43(3):260-72.
Heselmeyer K, Schröck E, Du Manoir S, Blegen H, Shah K, Steinbeck R, et al. Gain of chromosome 3q defi nes the transition from severe dysplasia to invasive carcinoma of the uterine cervix. Proc Natl Acad Sci U S A. 1996;93(1):479-84.
Huang KF, Lee WY, Huang SC, Lin YS, Kang CY, Liou CP, et al. Chromosomal Gain of 3q and loss of 11q often associated with nodal metastasis in early stage cervical squamous cell carcinoma. J Formos Med Assoc. 2007;106(11):894-902.
Bulten J, Poddighe PJ, Robben JC, Gemmink JH, de Wilde PC, Hanselaar AG. Interphase cytogenetic analysis of cervical intraepithelial neoplasia. Am J Pathol. 1998;152(2):495-503.
Hidalgo A, Baudis M, Petersen I, Arreola H, Piña P, Vásquez-Ortiz G, et al. Microarray comparative genomic hybridization detection of chromosomal imbalances in uterine cervix carcinoma. BMC Cancer. 2005 Jul 9;5:77. Disponible en http://www.ncbi.nlm. nih.gov/pmc/articles/PMC1186020/pdf/1471-2407- 5-77.pdf
Olaharski AJ, Sotelo R, Solorza-Luna G, Gonsebatt ME, Guzmán P, Mohar A, et al. Tetraploidy and chromosomal instability are early events during cervical carcinogenesis. Carcinogenesis. 2006;27(2): 337-43.
Baycal C, Ayhan A, AI A, Yüce K, Ayhan A. No relationship is indicated between FHIT expression and clinicopathologic prognostic parameters in early stage cervical carcinoma. Int J Gynecol Cancer. 2003;13(2):192-6.
Caraway NP, Khanna A, Dawlett M, Guo M, Guo N, Lin E, et al. Gain of the 3q26 region in cervicovaginal liquid-based Pap preparations is associated with squamous intraepithelial lesions and squamous cell carcinoma. Gynecol Oncol. 2008;110(1):37-42.
Chatterjee A, Pulido HA, Koul S, Beleño N, Perilla A, Posso H, et al. Mapping of the sites of putative tumor suppressor genes at 6p25 and 6p21.3 in cervical carcinoma: occurrence of allelic deletions on precancerous lesions. Cancer Res. 2001;61(5):2119-23.
Policht FA, Song M, Sitailo S, O’Hare A, Ashfaq R, Muller CY, et al. Analysis of genetic copy number changes in cervical disease progression. BMC Cancer. 2010;10:432. Disponible en http://www.ncbi. nlm.nih.gov/pmc/articles/PMC2936324/pdf/1471- 2407-10-432.pdf
Thompson MW, McInnes RR, Willard HF, Thompson JS. Genética en medicina. Cuarta edición. Barcelona, España: Masson; 1996.
Liu Y, Dong X, Tian C, Liu HG. Human telomerase RNA component (hTERC) gene amplifi cation detected by FISH in precancerous lesions and carcinoma of the larynx. Diagn Pathol. 2012;7:34. Disponible en http://www.ncbi.nlm.nih.gov/pmc/ articles/PMC3359179/
Wilting SM, de Wilde J, Meijer CJ, Berkhof J, Yi Y, van Wieringen WN, et al. Integrated genomic and transcriptional profi ling Identifi es chromosomal loci with altered gene expression in cervical cancer. Genes Chromosomes Cancer. 2008;47(10):890-905.
Yoshida M, Yamasaki K, Daiho T, Iizuka H, Suzuki H. ATP2C1 is specifi cally localized in the basal layer of normal epidermis and its depletion triggers keratinocyte differentiation. J Dermatol Sci. 2006;43(1): 21-33.
Abba MC, Laguens RM, Dulout FN, Golijow CD. The c-MYC activation in cervical carcinomas and HPV 16 infections. Mutat Res. 2004;557(2):151-8.
Tabach Y, Kogan-Sakin I, Buganim Y, Solomon H, Goldfi nger N, Hovland R, et al. Amplifi cation of the 20q chromosomal arm occurs early in tumorigenic transformation and may initiate cancer. Plos One. 2011;6(1):e14632.
Arias-Pulido H, Narayan G, Vargas H, Mansukhani M, Murty VV. Mapping common deleted regions on 5p15 in cervical carcinoma and their occurrence in precancerous lesions. Mol Cancer. 2002;1:3. Disponible en http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC140145/pdf/1476-4598-1-3.pdf
Torres-Lobatón A, Rojo-Herrera G, Torres-Rojo A, Hurtado-Estrada G, Román-Bassaure E. Cáncer del cuello uterino. Panorama actual de su epidemiologia y de sus factores de riesgo. Ginecol Obstet Mex. 2004;72(9):466-74.
Muñoz N, Bosh J, De Sanjosé S, Herrero R, Castellsagué X, Shah K, et al. Epidemiologic classifi cation of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348(6):518-27.
Paulo M, Borges AB, Duarte G, Quintana SM, Montes MB, Toloi MR. The environmental cofactors in carcinogenesis in high risk HPV/HIV-positive women. Braz J Infect Dis. 2007;11(2):189-95.
Roa SJC, Martínez SR, Montenegro S, Roa EI, Capurro VI, Ibacache SG, et al. Inestabilidad microsatelital en lesiones preneoplásicas y neoplásicas del cuello uterino. Correlación con el genotipo del virus del papiloma humano. Rev Med Chil. 2007;135 (1):37-44.
Villa LL. Human papillomaviruses and cervical cancer. Adv Cancer Res. 1997;71:321-41.
Sokolova I, Algeciras-Schimnich A, Song M, Sitalio S, Politcht F, Kipp BR, et al. Chromosomal biomarkers for detection of human papillomavirus associated genomic instability in epithelial cells of cervical cytology specimens. J Mol Diagn. 2007;9(5):604-11.
Jentsch I, Adler ID, Carter NP, Speicher MR. Karyotyping mouse chromosomes by multiplex–Fish (MFISH). Chromosome Res. 2001;9(3):211-4.
Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, et al. Multicolor spectral karyotyping of human chromosomes. Science 1996;273(5274):494-7.