2013, Número 4
<< Anterior Siguiente >>
Gac Med Mex 2013; 149 (4)
Hormesis: lo que no mata, fortalece
López-Diazguerrero NE, González PVY, Hernández-Bautista RJ, Alarcón-Aguilar A, Luna-López A, Königsberg FM
Idioma: Español
Referencias bibliográficas: 105
Paginas: 438-447
Archivo PDF: 113.06 Kb.
RESUMEN
A lo largo de la evolución, los organismos vivos han tenido que adaptarse a condiciones y agentes adversos para lograr
sobrevivir, por lo que han desarrollado diversos y complejos mecanismos para lidiar con ellos.
Actualmente, se han identificado una serie de procesos conservados durante los cuales una dosis baja o subletal de
un agente o estímulo estresante es capaz de activar una respuesta adaptativa que incrementa la resistencia de una
célula u organismo frente a un estrés más severo. A esta respuesta se le conoce como hormesis. Existen una gran
cantidad de agentes horméticos entre los que se encuentran la radiación, el calor, los metales pesados, los antibióticos,
el etanol, los agentes prooxidantes, el ejercicio y la restricción alimentaria. La respuesta hormética involucra la expresión
de una gran cantidad de genes que codifican para proteínas citoprotectoras como las chaperonas del tipo de las que
responden a estrés térmico, las enzimas antioxidantes, los factores de crecimiento, las metalotioneínas, entre otros.
En esta revisión se explorará la respuesta hormética particularmente frente al estrés oxidante, en especial durante el envejecimiento
y la senescencia celular, así como en algunos padecimientos como la diabetes y las enfermedades neurodegenerativas.
REFERENCIAS (EN ESTE ARTÍCULO)
Calabrese EJ, Bachmann KA, Bailer AJ, et al. Biological stress response terminology. Toxicol Appl Pharm. 2007;222:122-8.
Calabrese EJ. Converging concepts: adaptive response, preconditioning, and the Yerkes-Dodson Law are manifestations of hormesis. Ageing Res Rev. 2008;7:8-20.
Mattson MP. Hormesis defined. Ageing Res Rev. 2008;7:1-7.
Hoffmann GR. A perspective on the scientific, philosophical, and policy dimensions of hormesis. Dose-Response. 2009;7:1-51.
Rattan SI, Fernandes RA, Demirovic D, Dymek B, Lima CF. Heat stress and hormetin-induced hormesis in human cells: effects on aging, wound healing, angiogenesis, and differentiation. Dose-Response. 2009;7:90-103.
Calabrese EJ, Baldwin LA. Toxicology rethinks its central belief. Nature. 2003;421:691-2.
Rattan SI. Increased molecular damage and heterogeneity as the basis of aging. Biol Chem. 2008;389:267-72.
Mathers J, Fraser JA, McMahon M, Saunders RD, Hayes JD, McLellan LI. Antioxidant and cytoprotective responses to redox stress. Biochem Soc Symp. 2004;71:157-76.
Sen-Yung H, Chih-Yun H, Jung-Ru H, et al. Identifying apoptosis-evasion proteins/pathways in human hepatoma cells via induction of cellular hormesis by UV irradiation. J Proteome Res. 2009;8:3977-86.
Calabrese V, Cornelius C, Cuzzocrea S, Iavicoli I, Rizzarelli E, Calabrese EJ. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol Aspects Med. 2011;32:279-304.
Zhang Q, Pi J, Woods CG, Jarabek AM, Clewell HJ, Andersen ME. Hormesis and adaptive cellular control systems. Dose Response. 2008;6:196-208.
Calabrese V, Cornelius C, Dinkova-Kostova AT, et al. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta. 2011;1822:753-83.
Kouda K, Iki M. Beneficial effects of mild stress (hormetic effects): dietary restriction and health. J Physiol Anthropol. 2010;29:127-32.
Sies H. Oxidative stress from basic research to clinical application. Am J Med. 1991;91(Suppl):31-8.
Poderoso JJ, Boveris A, Cadenas E. Mitochondrial oxidative stress: a self-propagating process with implications for signaling cascades. Biofactors. 2000;11:43-5.
Boveris A, Repetto MG, Boveris AD, Valdez LB. Determinación del estrés oxidativo en seres humanos en situaciones clínicas. En: Königsberg M, ed. Radicales libres y estrés oxidativo. Aplicaciones médicas. El manual moderno. 1.a ed. México: 2008. p. 319-28.
Halliwell B, Gutteridge MC. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219:1-14.
Königsberg M, ed. Radicales libres y estrés oxidativo. Aplicaciones médicas. El manual moderno. México: 2008. p. 636.
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003;2:335-44.
Kowaltowski AJ, Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med. 2009;47:333-43.
Burdon RH. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med. 1995;18:775-94.
Wiese AG, Pacifici RE, Davies KJ. Transient adaptation of oxidative stress in mammalian cells. Arch Biochem Biophys. 1995;318:231-40.
Pickering AM, Linder RA, Zhang H, Forman HJ, Davies KJ. Nrf2-dependent induction of proteasome and Pa28 alpha-beta regulator are required for adaptation to oxidative stress. J Biol Chem. 2012;287:10021-31.
Luna-López A, Triana-Martínez F, López-Diazguerrero NE, et al. Bcl-2 sustains hormetic response by inducing Nrf-2 nuclear translocation in L929 mouse fibroblasts. Free Radic Biol Med. 2010;49:1192-204.
Grune T, Catalgol B, Licht A, et al. HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radic Biol Med. 2011;51:1355-64.
Pickering AM, Vojtovich L, Tower J, Davies KJ. Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radic Biol Med. 2013;55:109-18.
Banerjee R. Redox outside the box: linking extracellular redox remodeling with intracellular redox metabolism. J Biol Chem. 2012;287:4397-402.
Kirkwood TB. Comparative life spans of species: why do species have the life spans they do? Am J Clin Nutr. 1992;55(Suppl):1191-25.
Bohr V, Anson R, Mazur S, Dianov G. Oxidative DNA damage processing & changes with aging. Toxicol Lett. 1998;102:47-52.
Martin M, Austad SN, Johonson TE. Generic analysis of ageing: role of oxidative damage and environmental stresses. Nature Genetics. 1996;113:25-34.
Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem. 2010;47:69-84.
Quiroz-Báez R, Flores-Domínguez D, Arias C. Synaptic aging is associated with mitochondrial dysfunction, reduced antioxidant contents and increased vulnerability to amyloid- toxicity. Curr Alzheimer Res. 2013;10:324-31.
Goodpaster BH. Mitochondrial deficiency is associated with insulin resistance. Diabetes. 2013;62:1032-5.
Harman D. About origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009. Biogerontology. 2009;10:783.
Harman D. Ageing: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298-300.
Hwang AB, Jeong DE, Lee SJ. Mitochondria and organismal longevity. Curr Genomics. 2012;13:519-32.
Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med. 2013. In press. doi: pii: S0891- 5849(13)00141-X.
Wall SB, Oh JY, Diers AR, Landar A. Oxidative modification of proteins: an emerging mechanism of cell signaling. Front Physiol. 2012;3:369.
Niki E. Do antioxidants impair signaling by reactive oxygen species and lipid oxidation products? FEBS Lett. 2012;586:3767-70.
Blagoskonny MV. Hormesis does not make sense except in the light of TOR-driven aging. Aging. 2011;3:1052-62.
Kristensen TN, Sorensen JG, Loeschcke V. Mild heat stress at a young age in Drosophila melanogaster leads to increased Hsp70 synthesis after stress exposure later in life. J Gen. 2003;82:89-94.
Rattan SI, Ali RE. Hormetic prevention of molecular damage during cellular aging of human skin fibroblasts and keratinocytes. Ann NY Acad Sci. 2007;1:424-30.
Ristow M, Zarse, K. How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol. 2010;45:410-8.
Rattan SI, Deva T. Testing the hormetic nature of homeopathic interventions through stress response pathways. Hum Exp Toxicol. 2010;29:551-4.
Campisi J. Senescent cells, tumor suppression, and organismal aging. Cell. 2005;120:513-22.
Campisi J. Aging cellular senescence and cancer. Annu Rev Physiol. 2013;75:685-705.
Dimri GP, Basile G, Acosta M, et al. A biomarker that identifies senescent human cells in culture and in ageing skin in vivo. Proc Natl Acad Sci USA. 1995;92:9362-7.
Muller M. Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations. Antiox Redox Signal. 2009;11:60-98.
Sikora E, Arendt T, Bennettc M, Narita M. Impact of cellular senescence signature on ageing research. Age Res Rev. 2011;10:146-52.
Davalos AR, Coppe JP, Campisi J, Desprez PY. Senescent cells as a source of inflammatory factors for tumor progression. Can Met Rev. 2010;29:273-83.
Fumagalli M, D’Adda di Fagagna F. SASPense and DDRama in cancer and ageing. Nature Cell Biol. 2009;11:921-3.
Udelsman R, Blake MJ, Stagg CA, Holbrook NJ. Endocrine control of stress-induced heat shock protein 70 expression in vivo. Surgery. 1994;115:611-6.
Fonager J, Beedholm R, Clark BF, Rattan SI. Mild stress induced stimulation of heat-shock protein synthesis and improved functional ability of human fibroblasts undergoing aging in vitro. Exp Gerontol. 2002;37:1223-8.
Rattan S. Aging intervention, prevention, and therapy through hormesis. J Gerontol Biol Sci. 2004;59:705-9.
Berge U, Kristensen P, Rattan SI. Hormetic modulation of differentiation of normal human epidermal keratinocytes undergoing replicative senescence in vitro. Exp Gerontology. 2008;43:658-62.
Pérez FP, Ximing Z, Morisaki J, Jurivich D. Electromagnetic field therapy delays cellular senescence and death by enhancement of the heat shock response. Exp Gerontol. 2008;43:307-16.
Calabrese EJ, Calabrese V. Reduction of arthritic symptoms by low dose radiation therapy (LD-RT) is associated with an anti-inflammatory phenotype. Int J Radiat Biol. 2013;89:278-86.
Kenyon CJ. The genetics of ageing. Nature. 2010;464:504-12.
Haigis M, Yanker BA. The aging stress response. Mol Cell. 2010;40:333- 44.
McCay CM, Crowel MF, Maynard LA. The effect of retarded growth upon the length of the life span and upon the ultimate body size. J Nutr. 1935;10:63-79.
Barrows CH, Kokkonen GC. Dietary restriction and life extension, biological mechanisms. In: Moment GB, ed. Nutritional approaches to aging research. Boca Raton, FL: CRC Press Inc; 1982. p. 219-43.
Weindruch R, Walford RL. The retardation of aging and disease by dietary restriction. Springfield, IL: Charles C Thomas Publisher; 1988.
Heilbronn LK, Ravussin E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr. 2003;73:361-9.
Rivera-Zavala JB, Báez-Ruiz A, Díaz-Muñoz M. Changes in the 24 h rhythmicity of liver PPARs and peroxisomal markers when feeding is restricted to two daytime hours. PPAR Res. 2011:261584.
Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E. The sirtuins, oxidative stress and aging: an emerging link. Aging. 2013; 5:144-50.
Maxmen A. Calorie restriction falters in the long run. Nature. 2012; 488:569.
Mattison JA, Roth GS, Beasley TM, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489:318-21.
Calabrese V, Cornelius C, Leso V, et al. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim Biophys Acta. 2012;1822:729-36.
Loh K, Deng H, Fukushima A, et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009;10:260-72.
Kolb H, Eizirik DL. Resistance to type 2 diabetes mellitus: a matter of hormesis? Nature Rev Endoc. 2011;8:183-92.
Olmos PR, Niklitschek S, Olmos RI, et al. A new physiopathological classification of diabetic neuropathy. Revista Medica de Chile. 2012;140:1593-605.
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circulation Research. 2010;107:1058-70.
Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone. 2012;50:546-52.
Kolb H. Resistance to diabetes-promoting lifestyle factors – What is the mechanism? Diab Res Clin Pract. 2012;97:172-4.
Andreazzi AE, Scomparin DX, Mesquita FP, et al. Swimming exercise at weaning improves glycemic control and inhibits the onset of monosodium L-glutamate-obesity in mice. J Endocrinol. 2009;201:351-9.
Nickelson KJ, Stromsdorfer KL, Pickering RT, et al. A comparison of inflammatory and oxidative stress markers in adipose tissue from weight-matched obese male and female mice. Exp Diab Res. 2012;1-3.
Zelezná B, Maixnerová J, Matysková R, Haugvicová R, Blokesová D, Maletínská L. Anorexigenic effect of cholecystokinin is lost but that of CART (Cocaine and Amphetamine Regulated Transcript) peptide is preserved in monosodium glutamate obese mice. Physiol Res. 2009;58:717-23.
Maggio CA, Pi-Sunyer FX. The prevention and treatment of obesity. Application to type 2 diabetes. Diabetes Care. 1997;20:1744-66.
Svacina S, Owen K. Obesity, type 2 diabetes and their quantitative relation. Vnitrní Lékarství. 2002;48:500-6.
Li N, Stojanovski S, Maechler P. Mitochondrial hormesis in pancreatic cells: does uncoupling protein 2 play a role? Oxi Med Cell Long. 2012;1-9.
Lalloyer F, Vandewalle B, Percevault F, et al. Peroxisome proliferatoractivated receptor improves pancreatic adaptation to insulin resistance in obese mice and reduces lipotoxicity in human islets. Diabetes. 2006;55:1605-13.
Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993;262:689-95.
Dawson R, Beal M, Bondy SC, DiMonte DA, Isom GE. Excitotoxins, aging, and environmental neurotoxins: implications for understanding human neurodegenerative diseases. Toxicol Appl Pharmacol. 1995;134:1-17.
Santamaría A. Daño oxidativo y enfermedades neurodegenerativas. En: Königsberg M, ed. Radicales libres y estrés oxidativo. Aplicaciones médicas. El manual moderno. 1.a ed. México: 2008. p. 359-75.
Lam PY, Ko KM. Schisandrin B as a hormetic agent for preventing agerelated neurodegenerative diseases. Oxid Med Cell Long. 2012; 250825:1-9.
Beal MF, Hyman BT, Koroshetz W. Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci. 1993;16:125-31.
Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Ann Rev Pharmacol Toxicol. 1996;36:83-106.
Adibhatla RM, Hatcher JF. Altered lipid metabolism in brain injury and disorders. Subcell Biochem. 2008;49:241-68.
Gidalevitz T, Kikis EA, Morimoto RI. A cellular perspective on conformational disease: the role of genetic background and proteostasis networks. Curr Opin Struc Biol. 2010;20:23-32.
Dillin A, Cohen E. Ageing and protein aggregation-mediated disorders: from invertebrates to mammals. Phil Trans R Soc B. 2011;366:94-8.
Mathers J, Fraser JA, McMahon M, Saunders RD, Hayes JD, McLellan LI. Antioxidant and cytoprotective responses to redox stress. Biochem Soc Symp. 2004;71:157-76.
DiSilvestro RA, Joseph E, Zhao S, Bomser J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J. 2012;11:79.
Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 2002;62:5196-203.
Gharavi N, Haggarty S, El-Kadi AO. Chemoprotective and carcinogenic effects of tert-butylhydroquinone and its metabolites. Curr Drug Metab. 2007;8:1-7.
Villaflores OB, Chen YJ, Chen CP, Yeh JM, Wu TY. Curcuminoids and resveratrol as anti-Alzheimer agents. Taiwan J Obstet Gynecol. 2012;51:515-25.
Radak Z, Zhao Z, Goto S, Koltai E. Age-associated neurodegeneration and oxidative damage to lipids, proteins and DNA. Mol Aspects Med. 2011;32:305-15.
Calabrese V, Cornelius C, Stella AM, Calabrese EJ. Cellular stress responses, mitostress and carnitine insufficiencies as critical determinants in aging and neurodegenerative disorders: role of hormesis and vitagenes. Neurochem Res. 2010;35:1880-915.
Erlank H, Elmann A, Kohen R, Kanner J. Polyphenols activate Nrf2 in astrocytes via H2O2, semiquinones, and quinones. Free Radic Biol Med. 2011;51:2319-27.
Kraft AD, Johnson DA, Johnson JA. Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neuroscience. 2004;24: 1101-12.
Jakel RJ, Townsend JA, Kraft AD, Johnson JA. Nrf2-mediated protection against 6-hydroxydopamine. Brain Res. 2007;1144:192-201.
Imhoff BR, Hansen JM. Tert-butylhydroquinone induces mitochondrial oxidative stress causing Nrf2 activation. Cell Biol Toxicol. 2010;26:541-51.
Pérez-Cruz C, Nolte MW, Van Gaalen MM, et al. Reduced spine density in specific regions of CA1 pyramidal neurons in two transgenic mouse models of Alzheimer’s disease. J Neurosci. 2011;31:3926-34.
Mohmmad Abdul H, Butterfield DA. Protection against amyloid betapeptide (1-42)-induced loss of phospholipid asymmetry in synaptosomal membranes by tricyclodecan-9-xanthogenate (D609) and ferulic acid ethyl ester: implications for Alzheimer’s disease. Biochim Biophys Acta. 2005;1741:140-8.
Luna-López A, González-Puertos VY, Romero-Ontiveros J, et al. A noncanonical NF-B pathway through the p50 subunit regulates Bcl-2 overexpression during an oxidative conditioning hormesis response. Free Radic Biol Med. 2013. In press. doi: pii: S0891-5849(13)00191-3.
Calabrese EJ, Stanek EJ, Nascarella MA, Hoffman GR. Hormesis predicts low-dose responses better than threshold models. Int J Toxicol. 2008;27:369-78.