2011, Número 6
<< Anterior Siguiente >>
Rev Mex Neuroci 2011; 12 (6)
DHA y funcionamiento cerebral: ¿Cuáles son los beneficios?
Leyva-Rendón A
Idioma: Español
Referencias bibliográficas: 50
Paginas: 365-372
Archivo PDF: 136.03 Kb.
RESUMEN
El ácido docosahexaenoico (DHA) es un ácido graso poli-insaturado de cadena larga que pertenece al grupo omega-3. Se obtiene de fuentes exógenas como aceites de pescado quienes lo procesan del consumo de algas, mientras que la fuente interna es por procesos de transformación a partir de otros ácidos grasos. Los órganos con mayor concentración son el cerebro y la retina y sus principales funciones son como componente de membrana y sustrato de energía. Los estudios en modelos animales han demostrado que el DHA suprime la fosforilación de la proteína
tau y algunas acciones de la proteína β-amiloide en modelos de Alzheimer, mientras que su deficiencia produce un menor rendimiento en las pruebas cognoscitivas y conductuales. Por otro lado, los estudios en humanos muestran que existe un transporte activo desde la etapa prenatal y la capacidad de transformación a DHA a partir de otros ácidos grasos se mantiene a lo largo de toda la vida. Otros estudios le han atribuido funciones en la neurogénesis, neurotransmisión y neuroprotección contra el estrés oxidativo. La evidencia que apoya la suplementación en las distintas etapas del desarrollo ha sido controvertida, teniendo como objetivo primario la mejoría del desempeño intelectual durante la infancia y el mantenimiento o mejoría de la memoria en la etapa adulta, cuando existe deterioro leve, tópicos que se analizan en esta revisión narrativa.
REFERENCIAS (EN ESTE ARTÍCULO)
Docosahexaenoic Acid. Alternative Medicine Review 2009; 14: 391-9.
Singh M. Essential fatty acids, DHA and the human brain. Indian J Pediatr 2005; 72: 239-42.
Jicha GA, Markesbery WR. Omega-3 fatty acids: potential role in the management of early Alzheimer disease. Clinical Interventions in Aging 2010; 5: 45-61.
Lukiw WJ, Bazan NG. Docosahexaenoic Acid and the Aging Brain. Journal of Nutrition 2008; 138(12): 2510-14.
Bazan NG. Omega-3 acids, pro-inflammatory signaling and neuroprotection. Curr Opin Clin Nutr Metab Care 2007; 10: 136-41.
Ma QL, Yang F, et al. b-Amyloid Oligomers Induce Phosphorylation of Tau and Inactivation of Insulin Receptor Substrate via c-Jun N-Terminal Kinase Signaling: Suppresion by Omega-3 Fatty Acids and Curcumin. J Neuroscien 2009; 29(28): 9078-89.
Heidenreich KA, de Vellis G, Gilmore PR. Functional properties of the subtype of insulin receptor found in neurons. J Neurochem 1988; 51: 787.
Matsumoto H, Rhoads DE. Specific binding of insulin to membranes from dendrodendritic synaptosomes of rat olfactory bulb. J Neurochem 1990; 54: 347-50.
Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DI. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 1999; 274: 34893-902.
Sakamoto T, Cansev M, Wurtman RJ. Oral Supplementation with Docosahexaenoic Acid and Uridine-5-Monophosphate Increases Dendritic Spine Density in Adult Gerbil Hipocampus. Brain Res 2007; 1182: 50-59.
Chytrova G, Ying Z, Gomez-Pinilla F. Exercises contributes to the effects of DHA dietary supplementation by acting on membrane-related synaptic systems. Brain Res 2010; 1341C: 32-40.
Fedoroval I, et al. An n-3 fatty acid deficient diet affects mouse spatial learning in the Barnes circular maze. Prostaglandins Leukot Essent Fatty Acids 2007; 77: 269-77.
He C, Qu X, Cui L, Wang J, Kang JX. Improved spatial learning performance of fat-1 mice is associated with enhaced neurogénesis and neuritogenesis by docosahexaenoic acid. PNAS 2009; 106(27): 11370-5.
Innis S. Dietary (n-3) Fatty Acids and Brain Development. J Nutrit 2007; 137: 855-9.
Innis SM. Essential fatty acid transfer and fetal development. Placenta 2005; 26: S70-S75.
Larque E, Krauss-Etschmann S, Campoy C, Hartl D, Linde J, Klingler M, et al. Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins. Am J Clin Nutr 2006; 84; 853-61.
Farquharson J, Cockburn F, Patrick WA, Jamieson EC, Logan RW. Effect of diet on the fatty acid composition of the major phospholipids of infant cerebral cortex. Arch Dis Child 1995; 72: 198-203.
Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA. Fatty acid composition of brain, retina, and erythrocytes in breast- and formulafed infants. Am J Clin Nutr 1994; 60: 189-94.
Ahmad A, Moriguchi T, Salem N, Jr. Decrease in neuron size in docosahexaenoic acid–deficient brain. Pediatr Neurol 2002; 26: 210-18.
Wainwright PE, Bulman-Fleming MB, Levesque S, Mustsaers L, Mutcheon D. A saturated fat diet during development alters dendritic growth in mouse brain. Nutr Neurosci 1998; 1: 49-58.
Ryan AS, Astwood JD, Gautier S, Kuratko CN, Nelson EB, Salem N. Effects of long-chain polyunsaturated fatty acid supplementation on neurodevelopment in childhood: A review of human studies. Prostaglandins, Leukotrienes and Essential Fatty Acids 2010; 82: 305-14.
Simmer K, Patole S. Long chain polyunsaturated fatty acid supplementation in preterm infants. Cochrane Database Syst Rev 2004; 1.
Simmer K. Long chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst Rev 2001; 4.
Harris WS, Mozaffarian D, Lefevre M, et al. Towards establishing dietary reference intakes for eicosapentaenoic and docosapentaenoic acids. J Nutr. 2009; 139: 804S-819S.
Bakker EC, Ghys AJA, Kester ADM, et al. Long-chain polyunsaturated fatty acids at birth and cognitive function at 7 years of age. Eur J Clin Nutr 2003; 57: 89-95.
Ghys A, Bakker E, Hornstra G, van den Hout M. red blood cell and plasma phospholipid arachidonic and docosahexaenoic acid levels at birth and cognitive development at 4 years of age . Early Hum Dev 2002; 69: 83-90.
Bakker EC, Hornstra G, Blanco CE, Vles JSH. Relationship between long-chain polyunsaturated fatty acids at birth and motor function at 7 years of age. Eur J Clin Nutr 2009; 63: 499-504.
Zhang J, Hebert JR, Muldoon MF. Dietary fat intake is associated with psychosocial and cognitive functioning of school-age children in the United States. J Nutr 2005; 135: 1967-73.
Whalley LJ, Fox HC, Wahle KW, Starr JM, Deary IJ. Cognitive aging, childhood intelligence, and the use of food supplements: possible involvement of n-3 fatty acids. Am J Clin Nutr 2004; 80: 1650-7.
Hibbeln JR, Davis JN, Steer C, et al. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC): an observational study. Lancet 2007; 369: 578-85.
Oken E, Radesky JS, Wright RO, et al. Maternal fish intake, during pregnancy, blood mercury levels, and child cognition at age 3 years in a US cohort. Am J Epidemiol 2008; 167: 1171-81.
Aberg MA, Aberg N, Brisman J, Sundberg R, Winkvist A, Toren K. Fish intake of Swedish male adolescents is a predictor of cognitive performance. Acta Paediatr 2009; 98: 555-60.
Oken E, Osterdal ML, Gillman MW, et al. Associations of maternal fish intake during pregnancy and breastfeeding duration with attainment of developmental milestones in early childhood: a study from the Danish National Birth Cohort. Am J Clin Nutr 2008; 88: 789-96.
Helland IB, Smith I, Saarem K, Saugstad OD, Drevon CA. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments childrens IQ at 4 years of age. Pediatrics 2003; 111: e39-e44.
Dunstan JA, Simmer K, Dixon G, Prescott SL. Cognitive assessment of children at age 2 years after maternal fish oil supplementation in pregnancy: a randomized controlled trial. Arch. Dis. Child, Fetal Neonatal Ed 2008; 93: F45-F50.
Yurko-Mauro K, McCarthy D, Rom D, Nelson EB, Ryan AS, Blackwell A, et al. Beneficial effects of docosahexaenoic acid on cognition in agerelated cognitive decline. Alzheimers & Dementia. 2010; 1-9. Article in press.
Dangour AD, Allen E, Elbourne D, Fasey N, Fletcher AE, et al. Effect of 2-y n-3 long-chain polyunsaturated fatty acid supplementation on cognitive function in older people: a randomized, double-blind controlled trial. Am J Clin Nutr 2010; 91: 1725-32.
van Gelder BM, Tijhuis M, Kalmijn S, Kromhout D. Fish consumption, n-3 fatty acids, and subsequent 5-y cognitive decline in elderly men: the Zutphen Elderly Study. Am J Clin Nutr 2007; 85: 1142-7.
van de Rest O, Geleijnse JM, Kok FJ, et al. Effect of fish oil on cognitive performance in older subjects. A randomized, controlled trial. Neurology 2008; 71: 430-8.
Freund Levi Y, Eriksdotter-Jönhagen M, Cederholm T, et al. Omega-3 fatty acid treatment of 174 patients with mild to moderate Alzheimers disease (OmegAD): a randomized double-blind trial. Arch Neurol 2006; 63: 1402-8.
Cederholm T, Palmblad J. Are omega-3 fatty acids options for prevention and treatment of cognitive decline and dementia? Curr Opin Clin Nutr Metab Care 2010; 13: 150-5.
Barberger-Gateau P, Raffaitin C, Letenneur L, et al. Dietary patterns and risk of dementia: the Three-City cohort study. Neurology 2007; 69:1921-30.
Devore EE, Grodstein F, van Rooij FJ, et al. Dietary intake of fish and omega-3 fatty acids in relation to long-term dementia risk. Am J Clin Nutr 2009; 90: 170-6.
Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Diet and risk of dementia: does fat matter?: the Rotterdam study. Neurology 2002; 59:1915–1921.
Kalmijn S, Launer LJ, Ott A, et al. Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann Neurol 1997; 42:776–782.
Albanese E, Dangour A, Uauy R, et al. Dietary fish and meat intake and dementia in Latin America, China, and India: a 10/66 Dementia Research Group population-based study. Am J Clin Nutr 2009; 90: 392-400.
Chiu CC, Su KP, Cheng TC, et al. The effects of omega-3 fatty acids monotherapy in Alzheimers disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 1538-44.
Serhan CN, Yang R, Martinod K, et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med 2009; 206: 15-23
Sahlin C, Pettersson FE, Nilsson LN, et al. Docosahexaenoic acid stimulates nonamyloidogenic APP processing resulting in reduced Abeta levels in cellular models of Alzheimers disease. Eur J Neurosci 2007; 26: 882-9.
Katakura M, Hashimoto M, Shahdat HM, et al. Docosahexaenoic acid promotes neuronal differentiation by regulating basic helix-loop-helix transcription factors and cell cycle in neural stem cells. Neuroscience 2009; 160: 651-60.