2002, Número 2
<< Anterior Siguiente >>
Arch Cardiol Mex 2002; 72 (2)
Principios y aplicaciones de la tomografía por emisión de positrones (PET) en la cardiología. PET en México: una realidad
Alexanderson RE, Kerik NE, Unzek FS, Fermon SS
Idioma: Español
Referencias bibliográficas: 33
Paginas: 152-164
Archivo PDF: 243.44 Kb.
RESUMEN
La tomografía por emisión de positrones (PET) ofrece la capacidad única de medir en forma no invasiva el flujo de substratos miocárdicos regionales y el índice de reacciones bioquímicas en mmol por minuto por gramo de miocardio. Mientras que este aspecto es verdaderamente único, el PET ofrece otras capacidades adicionales, como por ejemplo la evaluación o cuantificación del flujo sanguíneo miocárdico regional, el metabolismo cardíaco, la función ventricular, la viabilidad miocárdica, investigación del sistema nervioso autónomo, así como la valoración de la miocardiopatía dilatada y la hipertrofia ventricular. El éxito del PET se basa en las propiedades de los isótopos empleados para esta técnica. Una de las características es su vida media corta, lo que hace posible la administración del trazador a dosis lo suficientemente altas para obtener una buena calidad de imagen siendo por otro lado baja la exposición del paciente a la radiación.
REFERENCIAS (EN ESTE ARTÍCULO)
Sorenson JA, Phelps ME: Nuclear medicine tomography: Systems and devices. En: Physics in nuclear medicine. 2nd Ed. Philadelphia W.B. Saunders Co., 1987: p434-435.
Zaret BL, Beller GA: Nuclera cardiology. St. Louis. Mosby-Year Book, Inc, 1993.
Marti-Climent J, Penvecas I, Calvo R, Giménez M, Gamez C, Richter J: Use of cyclotron in the production of positron emitting radionuclides. Rev Esp Med Nucl 1999; 4: 261-267.
De Silva R, Camici PG: The role of positron emission tomography in the investigation of coronary circulatory function in man. Cardiovasc Res 1994; 28: 1595-1612.
Camici PG, Gropler RJ, Jones T, L’Abbate A, Maseri A, Melin JA, et al: The impact of myocardial blood flow quantitation with PET on the understanding of cardiac diseases. Eur Heart J 1996; 17: 1 25-34.
Uren NG, Camici PG, Melin JA, Bol A, de Bruyne B, Radvan J: Effect of aging on myocardial perfusion reserve. J Nucl Med 1995; 36: 11 2032.
Taegtmeyer H: Carbohydrate interconversions and energy production. Circulation 1985; 72(suppl IV): 1-8.
Randle PJ, Garland PB, Hales CN, Newsholme EA: The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963: 785-789.
Randle PJ, Garland PB, Hales CN, Newsholme EA, Denton RM, Pogson Cl: Interactions of metabolism and the physiological role of insulin. Recent Prog Horm Res 1966; 22: 1-41.
Taegtmeyer H, Hems R, Krebs HA: Utilization of energy providing substrates in the isolated working rat heart. Biochem J 1980; 186: 701-711.
Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schonekess BO: Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1994; 1213: 263-276.
Schelbert HR: Principles of positron emission tomography. En: Marcus ML, Schelbert HR, Skorton DJ, Wolf GL, eds. Cardiac Imaging. Philadelphia: WB Saunders Company, 1991: 1140-1270.
Willemsen AT, Siebelink HJ, Blanksma PK, Paans AM: Automated ejection fraction determination from gated myocardial FDG-PET data. J Nucl Cardiol 1999; 6(6): 577-582.
Porenta G, Cherry S, Czernin J, Brunken R, Kuhle W, Hashimoto T: Noninvasive determination of myocardial blood flow, oxygen consumption and efficiency in normal humans by carbon-11 acetate positron emission tomography imaging. Eur J Nucl Med 1999; 26(11): 1465-1474.
Marinho NV, Keogh BE, Costa DC, Lammerstma AA, Ell PJ, Camici PG: Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation 1996; 93: 4 737-44.
Wijns W, Vatner SF, Camici PG: Hibernating myocardium. N Engl J Med 1998; 339: 173-81.
Schelbert HR: Positron emission tomography for the assessment of myocardial viability. Circulation 1991; 84(Suppl I): 122-131.
Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, Schelbert H: Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986; 314: 14 884-888.
Di Carli M, Sherman T, Khanna S, Davidson M, Rokhsar S, Hawkins R: Myocardial viability in asynergic regions subtended by occluded coronary arteries: Relation to the status of collateral flow in patients with chronic coronary artery disease. J Am Coll Cardiol 1994; 23: 4 860-868.
Fath-Ordoubadi F, Pagano D, Marinho NV, Keogh BE, Bonser RS, Camici PG: Coronary revascularization in the treatment of moderate and severe postischemic left ventricular dysfunction. Am J Cardiol 1998; 82: 1 26-31.
Fath-Ordoubadi F, Beatt KJ, Spyrou N, Camici PG: Efficacy of coronary angioplasty for the treatment of hibernating myocardium. Heart 1999; 82(2): 210-216.
Rechavia E, de Silva R, Kushwaha SS, Rhodes CG, Araujo LI, Jones T: Enhanced myocardial 18F-2-fluoro-2-deoxyglucose uptake after orthotopic heart transplantation assessed by positron emission tomography. J Am Coll Cardiol 1997; 30: 533-538.
Bengel F, Ueberfuhr P, Nekolla S, Ziegler S, Reichart B, Schwaiger M: Oxidative metabolism of the transplanted human heart assessed by positron emission tomography using C-11 Acetate. Am J Cardiol 1999; 83: 1503-1505.
Akinboboye OO, Idris O, Cannon PJ, Bergmann SR: Usefulness of positron emission tomography in defining myocardial viability in patients referred for cardiac transplantation. Am J Cardiol 1999; 83: 1271-1274.
Choudhury L, Rosen SD, Lefroy DC, Nihoyannopoulos P, Oakley CM, Camici PG: Myocardial beta adrenoceptor density in primary and secondary left ventricular hypertrophy. Eur Heart J 1996; 17: 1703-1709.
Choudhury L, Guzzetti S, Lefroy DC, Nihoyannopoulos P, McKenna WJ, Oakley CM, Camici PG: Myocardial beta adrenoceptors and left ventricular function in hypertrophic cardiomyopathy. Heart 1996; 75: 150-154.
Schwaiger M, Hutchins GD, Kalff V, Rosenspire K, Haka MS, Mallette S, et al: Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. J Clin Invest 1991; 87: 1681-1690.
Uberfuhr P, Ziegler S, Schwaiblmair M, Reichart B, Schwaiger M: Incomplete sympathic reinnervation of the orthotopically transplanted human heart: observation up to 13 years after heart transplantation. Eur J Cardiothorac Surg 2000; 17(2): 161-168.
Schafers M, Dutka D, Rhodes CG, Lammertsma AA, Hermansen F, Schober O, Camici PG: Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res 1998; 82(1): 57-62.
Yokoyama I, Momomura S, Ohtake T, Yonekura K, Inoue Y, Kobayakawa N: Role of positron emission tomography using fluorine-18 fluoro-2-deoxyglucose in predicting improvement in left ventricular function in patients with idiopathic dilated cardiomyopathy. Eur J Nucl Med 1998; 25(7): 736-43.
Ruiz Salmerón RJ, Jurado López JA, San Martín Gómez MA, Pérez-Castrejón MJ, Díaz-Buschmann I, Parra Jiménez FJ: Identification of the ischemic origin of dilated myocardiopathy using positron emission tomography. Rev Esp Cardiol 1998; 5: 167-76.
Vassalli G, Kaufmann P, Villari B, Jakob M, Boj H, Kiowski W, Hess OM: Reduced epicardial coronary vasodilator capacity in patients with left ventricular hypertrophy. Circulation 1995; 91: 12 2916-2923.
Gistri R, Cecchi F, Choudhury L, Montereggi A, Sorace O, Salvadori PA, Camici PG: Effect of verapamil on absolute myocardial blood flow in hypertrophic cardiomyopathy. Am J Cardiol 1994; 74: 4 363-368.