2013, Número 3
<< Anterior Siguiente >>
Salud Mental 2013; 36 (3)
Las zonas neurogénicas en el adulto y su relación con las enfermedades neuropsiquiátricas
Ramírez-Rodríguez G, Silva-Lucero MC, Gómez-Virgilio L, Ocaña-Fernández MÁ, Ortiz-López L, Torres-Pérez MO, Meraz-Ríos MA
Idioma: Español
Referencias bibliográficas: 76
Paginas: 201-210
Archivo PDF: 330.44 Kb.
RESUMEN
Las enfermedades neuropsiquiátricas (ENP) se caracterizan por cambios en la plasticidad cerebral que incluyen la pérdida neuronal en regiones específicas en el encéfalo, cambios en la transmisión sináptica originada por alteraciones en los contactos sinápticos y también por la expresión de genes. Además, otro proceso que forma parte de la plasticidad cerebral y que también se encuentra afectado en las ENP es la generación de nuevas neuronas (neurogénesis).
El proceso neurogénico en el adulto es regulado de manera fina por diversos factores como los aspectos genéticos, celulares, el microambiente, los elementos neuroquímicos, los ambientales y los nutricionales. Las alteraciones de estos factores impactan en el desarrollo y en la función de las nuevas neuronas.
Algunos estudios realizados en humanos han revelado las alteraciones en la neurogénesis en algunos ENP. Sin embargo los mayores avances logrados han utilizado modelos animales de ENP. En algunos casos estas evidencias son controvertidas y recientemente se han tratado de aclarar utilizando cultivos de células madre pluripotenciales-inducibles humanas como modelos de ENP. Otro modelo que se ha propuesto para estudiar las alteraciones en el desarrollo neuronal en las ENP son las células madre multipotenciales del epitelio olfatorio (CMPEO). Sin embargo las evidencias obtenidas con las CMPEO son escasas y resulta necesario demostrar si existe o no un correlato con las alteraciones que ocurren en el desarrollo neuronal a nivel central en las ENP, o bien si las CMPEO pueden mostrar las alteraciones observadas en las ENP que permitan obtener información acerca de los factores que promueven estas enfermedades.
Por lo tanto en esta revisión se incluyen aspectos básicos de la neurogénesis e información relevante de las alteraciones de este proceso en las tres regiones neurogénicas en el adulto: el hipocampo, el bulbo olfatorio y el epitelio olfatorio.
REFERENCIAS (EN ESTE ARTÍCULO)
Kempermann G, Jessberger S, Steiner B et al. Milestones of neuronal development in the adult hippocampus. Trends Neurosci 2004;27:447-452.
Lledo PM, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 2006;7:179-193.
Kempermann G, Wiskott L, Gage FH. Functional significance of adult neurogenesis. Curr Opin Neurobiol 2004;14:186-191.
Aimone JB, Deng W, Gage FH. Adult neurogenesis: integrating theories and separating functions. Trends Cogn Sci 2010;14:325-337.
Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 2010;11:339-350.
Kempermann G, Krebs J, Fabel K. The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Curr Opin Psychiatry 2008;21:290-295.
Altman J, Das GD. Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 1966;126:337-389.
Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci 2002;22:629-634.
van den Berge SA, Middeldorp J, Zhang CE et al. Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAP-delta. Aging Cell 2010;9:313-326.
Curtis MA, Faull RL, Eriksson PS. The effect of neurodegenerative diseases on the subventricular zone. Nat Rev Neurosci 2007;8:712-723.
Curtis MA, Low VF, Faull RL. Neurogenesis and progenitor cells in the adult human brain: a comparison between hippocampal and subventricular progenitor proliferation. Dev Neurobiol 2012;72:990-1005.
May VE, Nuber S, Marxreiter F et al: Impaired olfactory bulb neurogenesis depends on the presence of human wild-type alpha-synuclein. Neuroscience 2012;222:343-355.
Winner B, Kohl Z, Gage FH. Neurodegenerative disease and adult neurogenesis. Eur J Neurosci 2011;33:1139-1151.
Winner B, Regensburger M, Schreglmann S et al. Role of alpha-synuclein in adult neurogenesis and neuronal maturation in the dentate gyrus. J Neurosci 2012;32:16906-16916.
Enwere E, Shingo T, Gregg C et al. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 2004;24:8354-8365.
Aimone JB, Deng W, Gage FH. Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 2011;70:589-596.
Feron F, Bianco J, Ferguson I et al. Neurotrophin expression in the adult olfactory epithelium. Brain Res 2008;1196:13-21.
Girard SD, Deveze A, Nivet E et al: Isolating nasal olfactory stem cells from rodents or humans. J Vis Exp 2011;54:e2762; doi:10,3791/2762.
MacDonald KP, Murrell WG, Bartlett PF et al. FGF2 promotes neuronal differentiation in explant cultures of adult and embryonic mouse olfactory epithelium. J Neurosci Res 1996;44:27-39.
Mackay-Sima A, Chuahb MI. Neurotrophic factors in the primary olfactory pathway. Prog Neurobiol 2000;62:527-559.
Manceur AP, Tseng M, Holowacz T et al: Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors. Exp Cell Res 2011;317:2086-2098.
Babu H, Cheung G, Kettenmann H et al: Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons. PLoS One 2007;2:e388.
Gage FH, Kempermann G, Palmer TD et al: Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 1998;36:249-266.
Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 2000;425:479-494.
Snell RG, MacMillan JC, Cheadle JP et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 1993;4:393-397.
Sahay A, Scobie KN, Hill AS et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 2011;472:466-470.
Lim DA, Alvarez-Buylla A. Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci U S A 1999;96:7526-7531.
Ninkovic J, Pinto L, Petricca S et al. The transcription factor Pax6 regulates survival of dopaminergic olfactory bulb neurons via crystallin alphaA. Neuron 2010;68:682-694.
McCurdy RD, Feron F, Perry C et al. Cell cycle alterations in biopsied olfactory neuroepithelium in schizophrenia and bipolar I disorder using cell culture and gene expression analyses. Schizophr Res 2006;82:163-173.
Mackay-Sim A. Concise review: patient-derived olfactory stem cells: new models for brain diseases. Stem Cells 2012;30:2361-2365.
Arnold SE, Smutzer GS, Trojanowski JQ et al. Cellular and molecular neuropathology of the olfactory epithelium and central olfactory pathways in Alzheimer’s disease and schizophrenia. Ann N Y Acad Sci 1998;855:762-775.
Boekhoorn K, Joels M, Lucassen PJ. Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis 2006;24:1-14.
Esiri MM, Wilcock GK. The olfactory bulbs in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1984;47:56-60.
Mirochnic S, Wolf S, Staufenbiel M et al. Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease. Hippocampus 2009;19:1008-1018.
Sohrabi HR, Bates KA, Weinborn MG et al: Olfactory discrimination predicts cognitive decline among community-dwelling older adults. Transl Psychiatry 2012;2:e118.
Caspi A, Sugden K, Moffitt TE et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003;301:386-389.
Coe CL, Kramer M, Czeh B et al. Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biol Psychiatry 2003;54:1025-1034.
Gould E, Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry 1999;46:1472-1479.
Mirescu C, Gould E. Stress and adult neurogenesis. Hippocampus 2006;16:233-238.
Mirescu C, Peters JD, Gould E. Early life experience alters response of adult neurogenesis to stress. Nat Neurosci 2004;7:841-846.
Perera TD, Coplan JD, Lisanby SH et al. Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. J Neurosci 2007;27:4894-4901.
Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 2008;33:88-109.
Ramírez-Rodríguez G, Laguna-Chimal J, Ortiz-López L et al. Los fármacos antidepresivos como reguladores de la neurogénesis hipocámpica de roedores y humanos adultos. Salud Mental 2011;34:497-506.
Goldberg TE, Weinberger DR, Berman KF et al. Further evidence for dementia of the prefrontal type in schizophrenia? A controlled study of teaching the Wisconsin Card Sorting Test. Arch Gen Psychiatry 1987;44:1008-1014.
McGrath JJ, Feron FP, Burne TH et al: The neurodevelopmental hypothesis of schizophrenia: a review of recent developments. Ann Med 2003;35:86-93.
Raz S, Raz N, Weinberger DR et al. Morphological brain abnormalities in schizophrenia determined by computed tomography: a problem of measurement? Psychiatry Res 1987;22:91-98.
Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999;45:17-25.
Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987;44:660-669.
Berman KF, Weinberger DR, Shelton RC et al. A relationship between anatomical and physiological brain pathology in schizophrenia: lateral cerebral ventricular size predicts cortical blood flow. Am J Psychiatry 1987;144:1277-1282.
Kalkman HO. Altered growth factor signaling pathways as the basis of aberrant stem cell maturation in schizophrenia. Pharmacol Ther 2009;121:115-122.
Porteous DJ, Thomson P, Brandon NJ et al: The genetics and biology of DISC1--an emerging role in psychosis and cognition. Biol Psychiatry 2006;60:123-131.
Duan X, Chang JH, Ge S et al. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 2007;130:1146-1158.
Goodman AB. Three independent lines of evidence suggest retinoids as causal to schizophrenia. Proc Natl Acad Sci U S A 1998;95:7240-7244.
Maden M. Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci 2002;3:843-853.
Rioux L, Arnold SE. The expression of retinoic acid receptor alpha is increased in the granule cells of the dentate gyrus in schizophrenia. Psychiatry Res 2005;133:13-21.
Toro CT, Deakin JF. Adult neurogenesis and schizophrenia: a window on abnormal early brain development? Schizophr Res 2007;90:1-14.
Austin CP, Ky B, Ma L et al: Expression of Disrupted-In-Schizophrenia- 1, a schizophrenia-associated gene, is prominent in the mouse hippocampus throughout brain development. Neuroscience 2004;124:3-10.
Feron F, Perry C, Hirning MH et al. Altered adhesion, proliferation and death in neural cultures from adults with schizophrenia. Schizophr Res 1999;40:211-218.
Hoglinger GU, Rizk P, Muriel MP et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 2004;7:726-735.
Borta A, Hoglinger GU. Dopamine and adult neurogenesis. J Neurochem 2007;100:587-595.
Winner B, Geyer M, Couillard-Despres S et al. Striatal deafferentation increases dopaminergic neurogenesis in the adult olfactory bulb. Exp Neurol 2006;197:113-121.
Steiner B, Wolf S, Kempermann G. Adult neurogenesis and neurodegenerative disease. Regen Med 2006;1:15-28.
Kaneko N, Sawamoto K. Adult neurogenesis and its alteration under pathological conditions. Neurosci Res 2009;63:155-164.
Murrell W, Wetzig A, Donnellan M et al. Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson’s disease. Stem Cells 2008;26:2183-2192.
Keryer G, Pineda JR, Liot G et al. Ciliogenesis is regulated by a huntingtin- HAP1-PCM1 pathway and is altered in Huntington disease. J Clin Invest 2011;121:4372-4382.
Liu JP, Zeitlin SO. The long and the short of aberrant ciliogenesis in Huntington disease. J Clin Invest 2011;121:4237-4241.
Curtis MA, Penney EB, Pearson AG et al. Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc Natl Acad Sci U S A 2003;100:9023-9027.
Batista CM, Kippin TE, Willaime-Morawek S et al. A progressive and cell non-autonomous increase in striatal neural stem cells in the Huntington’s disease R6/2 mouse. J Neurosci 2006;26:10452-10460.
Lazic SE, Grote H, Armstrong RJ et al. Decreased hippocampal cell proliferation in R6/1 Huntington’s mice. Neuroreport 2004;15:811-813.
Jin K, Peel AL, Mao XO et al. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A 2004;101:343-347.
Herring A, Ambree O, Tomm M et al. Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology. Exp Neurol 2009;216:184-192.
Parent JM. Adult neurogenesis in the intact and epileptic dentate gyrus. Prog Brain Res 2007;163:529-540.
Holmes GL, Gairsa JL, Chevassus-Au-Louis N et al. Consequences of neonatal seizures in the rat: morphological and behavioral effects. Ann Neurol 1998;44:845-857.
Porter BE. Neurogenesis and epilepsy in the developing brain. Epilepsia 2008;49(Supl 5):50-54.
Rao MS, Hattiangady B, Shetty AK. Status epilepticus during old age is not associated with enhanced hippocampal neurogenesis. Hippocampus 2008;18:931-944.
Jakubs K, Nanobashvili A, Bonde S et al. Environment matters: synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability. Neuron 2006;52:1047-1059.