2012, Número 1
Siguiente >>
Rev Esp Cienc Salud 2012; 15 (1)
Los vectores virales y la transgénesis
Legorreta-Herrera M, Martínez-Flores F, Hernández SF, Zentella-Dehesa A
Idioma: Español
Referencias bibliográficas: 49
Paginas: 5-14
Archivo PDF: 362.25 Kb.
RESUMEN
Los vectores virales son el medio más eficiente para transferir genes, permiten modificar específicamente a una célula o a un tejido, para inducir la expresión de genes terapéuticos. Actualmente, se investigan diferentes virus que proporcionen la expresión permanente o temporal del transgene. Esos virus incluyen a los virus recombinantes, a los adenovirus, los virus adeno-asociados, los retrovirus y los virus herpes simplex. La elección del vector depende del uso y la eficiencia de la expresión del transgene, también se considera que su producción sea fácil, segura y estable.
En esta revisión se presenta: la biología de los virus, las bases de su manipulación genética y su potencial aplicación en modelos de transgénesis, algunos de estos factores podrían aportar elementos de juicio para la toma de decisiones prácticas y convenientes en procedimientos de transgénesis.
REFERENCIAS (EN ESTE ARTÍCULO)
Mulligan, RC. The basic science of gene therapy. Science 1993;260:926-32.
Jolly, D. Viral vector systems for gene therapy. Cancer Gene Ther 1994;1:51-64.
Gao, X and Huang, L. Cationic liposome-mediated gene transfer. Gene Ther 1995;2:710-22.
Warnock, JN, Daigre, C and Al-Rubeai, M. Introduction to viral vectors. Methods Mol Biol 2011;737:1-25.
Navarro, J, Oudrhiri, N, Fabrega, S and Lehn, P. Gene delivery systems: Bridging the gap between recombinant viruses and artificial vectors. Adv Drug Deliv Rev 1998;30:5-11.
Rowe, WP, Huebner, RJ, Gilmore, LK, Parrott, RH and Ward, TG. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 1953;84:570-3.
Young, LS, Searle, PF, Onion, D and Mautner, V. Viral gene therapy strategies: from basic science to clinical application. J Pathol 2006;208:299-318.
Lundstrom, K. Latest development in viral vectors for gene therapy. Trends Biotechnol 2003;21:117-22.
Schiedner, G, Morral, N, Parks, RJ, et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 1998;18:180-3.
Stecher, H, Shayakhmetov, DM, Stamatoyannopoulos, G and Lieber, A. A capsid-modified adenovirus vector devoid of all viral genes: assessment of transduction and toxicity in human hematopoietic cells. Mol Ther 2001;4:36-44.
Bergelson, JM, Cunningham, JA, Droguett, G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997;275:1320-3.
Tomko, RP, Xu, R and Philipson, L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci U S A 1997;94:3352-6.
Wickham, TJ, Mathias, P, Cheresh, DA and Nemerow, GR. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993;73:309-19.
Hutchins, B, Sajjadi, N, Seaver, S, Shepherd, A, Bauer, SR, Simek, S, Carson, K and Aguilar-Cordova, E. Working toward an adenoviral vector testing standard. Mol Ther 2000;2:532-4.
Bett, AJ, Haddara, W, Prevec, L and Graham, FL. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci U S A 1994;91:8802-6.
Graham, FL, Smiley, J, Russell, WC and Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977;36:59-74.
Lusky, M, Christ, M, Rittner, K, et al. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. J Virol 1998;72:2022-32.
O’Neal, WK, Zhou, H, Morral, N, et al. Toxicological comparison of E2a-deleted and first-generation adenoviral vectors expressing alpha1-antitrypsin after systemic delivery. Hum Gene Ther 1998;9:1587-98.
Andrews, JL, Kadan, MJ, Gorziglia, MI, Kaleko, M and Connelly, S. Generation and characterization of E1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII. Mol Ther 2001;3:329-36.
Morsy, MA and Caskey, CT. Expanded-capacity adenoviral vectors—the helper-dependent vectors. Mol Med Today 1999;5:18- 24.
Kotin, RM, Menninger, JC, Ward, DC and Berns, KI. Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter. Genomics 1991;10:831-4.
Samulski, RJ, Chang, LS and Shenk, T. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 1989;63:3822-8.
Rabinowitz, JE and Samulski, J. Adeno-associated virus expression systems for gene transfer. Curr Opin Biotechnol 1998;9:470-5.
Davidson, BL, Stein, CS, Heth, JA, et al. Recombinant adenoassociated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 2000;97:3428-32.
Gao, GP, Alvira, MR, Wang, L, Calcedo, R, Johnston, J and Wilson, JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 2002;99:11854-9.
Duverger, V, Sartorius, U, Klein-Bauernschmitt, P, Krammer, PH and Schlehofer, JR. Enhancement of cisplatin-induced apoptosis by infection with adeno-associated virus type 2. Int J Cancer 2002;97:706- 12.
Glorioso, JC, DeLuca, NA and Fink, DJ. Development and application of herpes simplex virus vectors for human gene therapy. Annu Rev Microbiol 1995;49:675-710.
Kim, SH, Yu, SS, Park, JS, Robbins, PD, An, CS and Kim, S. Construction of retroviral vectors with improved safety, gene expression, and versatility. J Virol 1998;72:994-1004.
Vigna, E and Naldini, L. Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med 2000;2:308-16.
Kay, MA, Glorioso, JC and Naldini, L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001;7:33-40.
Kommareddy, S, Tiwari, SB and Amiji, MM. Long-circulating polymeric nanovectors for tumor-selective gene delivery. Technol Cancer Res Treat 2005;4:615-25.
He, TC, Zhou, S, da Costa, LT, Yu, J, Kinzler, KW and Vogelstein, B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 1998;95:2509-14.
Dmitriev, I, Krasnykh, V, Miller, CR, Wang, M, Kashentseva, E, Mikheeva, G, Belousova, N and Curiel, DT. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998;72:9706-13.
van Beusechem, VW, van Rijswijk, AL, van Es, HH, Haisma, HJ, Pinedo, HM and Gerritsen, WR. Recombinant adenovirus vectors with knobless fibers for targeted gene transfer. Gene Ther 2000;7:1940- 6.
Li, ZB, Zeng, ZJ, Chen, Q, Luo, SQ and Hu, WX. Recombinant AAV-mediated HSVtk gene transfer with direct intratumoral injections and Tet-On regulation for implanted human breast cancer. BMC Cancer 2006;6:66.
Gomez-Navarro, J and Curiel, DT. Conditionally replicative adenoviral vectors for cancer gene therapy. Lancet Oncol 2000;1:148- 58.
Douglas, JT, Miller, CR, Kim, M, Dmitriev, I, Mikheeva, G, Krasnykh, V and Curiel, DT. A system for the propagation of adenoviral vectors with genetically modified receptor specificities. Nat Biotechnol 1999;17:470-5.
Liu, XY, Gu, JF and Shi, WF. Targeting gene-virotherapy for cancer. Acta Biochim Biophys Sin (Shanghai) 2005;37:581-7.
Li, X, Chen, G and Yang, B. Urea Transporter Physiology Studied in Knockout Mice. Front Physiol 2012;3:217.
Cooper, DK, Ekser, B, Burlak, C, et al. Clinical lung xenotransplantation - what donor genetic modifications may be necessary? Xenotransplantation 2012;19:144-58.
Park, JY, Park, MR, Bui, HT, et al. alpha1,3-Galactosyltransferase Deficiency in Germ-Free Miniature Pigs Increases NGlycolylneuraminic Acids As the Xenoantigenic Determinant in Pig- Human Xenotransplantation. Cell Reprogram 2012;14:353-63.
Pelosi, A, Shepherd, R and Walmsley, AM. Delivery of plantmade vaccines and therapeutics. Biotechnol Adv 2012;30:440-8.
Stocks, M. Intrabodies as drug discovery tools and therapeutics. Curr Opin Chem Biol 2005;9:359-65.
Maguire-Zeiss, KA, Wang, CI, Yehling, E, et al. Identification of human alpha-synuclein specific single chain antibodies. Biochem Biophys Res Commun 2006;349:1198-205.
Colby, DW, Chu, Y, Cassady, JP, et al. Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc Natl Acad Sci U S A 2004;101:17616-21.
Paganetti, P, Calanca, V, Galli, C, Stefani, M and Molinari, M. betasite specific intrabodies to decrease and prevent generation of Alzheimer’s Abeta peptide. J Cell Biol 2005;168:863-8.
Corte-Real, S, Collins, C, Aires da Silva, F, Simas, JP, Barbas, CF, 3rd, Chang, Y, Moore, P and Goncalves, J. Intrabodies targeting the Kaposi sarcoma-associated herpesvirus latency antigen inhibit viral persistence in lymphoma cells. Blood 2005;106:3797-802.
Griffin, H, Elston, R, Jackson, D, Ansell, K, Coleman, M, Winter, G and Doorbar, J. Inhibition of papillomavirus protein function in cervical cancer cells by intrabody targeting. J Mol Biol 2006;355:360- 78.
Paz, K, Brennan, LA, Iacolina, M, Doody, J, Hadari, YR and Zhu, Z. Human single-domain neutralizing intrabodies directed against Etk kinase: a novel approach to impair cellular transformation. Mol Cancer Ther 2005;4:1801-9.