2011, Número 4
<< Anterior Siguiente >>
Rev Invest Clin 2011; 63 (4)
Actualidades en el tratamiento quirúrgico de las lesiones de cartílago articular
Ibarra C, Villalobos E, Izaguirre A, Velasquillo C, Masri M, Ramírez I, Ibarra LG
Idioma: Español
Referencias bibliográficas: 81
Paginas: 423-432
Archivo PDF: 151.43 Kb.
FRAGMENTO
Motivo de consulta
Paciente de sexo femenino de 27 años de edad, nadadora de alto rendimiento. Presentó dolor transfictivo en la región lateral de la rodilla izquierda durante la práctica deportiva (nado de pecho y al correr), especialmente durante los movimientos de extensión y rotación de la rodilla.
REFERENCIAS (EN ESTE ARTÍCULO)
Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 2001; 391(Suppl.): S362-S369.
Wilk KE, et al. Rehabilitation of articular lesions in the athlete’s knee. J Orthop Sports Phys Ther 2006; 36(10): 815- 27.
Aigner T, et al. Independent expression of fibril-forming collagens I, II, and III in chondrocytes of human osteoarthritic cartilage. J Clin Invest 1993; 91(3): 829-37.
Roughley PJ. The structure and function of cartilage proteoglycans. Eur Cell Mater 2006; 12: 92-101.
Archer W, West P. The chondrocyte. Inter J Biochem Cell Biol 2003; 11: 3286-305.
Mukerji, Randolph, et al. Transactions, Orthopaedic Research Society (ORS). Annual Meeting. 1997, p. 536.
Poole C. Articular cartilage chondrons: form, function and failure. J Anat 1997; 191: 1-13.
Mankin HJ. The reaction of articular cartilage to injury and osteoarthritis (first of two parts). N Engl J Med 1974; 291(24): 1285-92.
Mankin HJ. The reaction of articular cartilage to injury and osteoarthritis (second of two parts). N Engl J Med 1974; 291(25): 1335-40.
Villalobos, et al. Congreso Mundial de la International Cartilage Repair Society (ICRS), San Diego, 2006.
Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1993; 75(4): 532-53.
Steadman JR, et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003; 19(5): 477-84.
Villalobos FE, et al. Reunión Anual de la American Academy of Orthopaedic Surgeons (AAOS), 2010.
Knutsen G, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 2007; 89(10): 2105-12.
Mithoefer K, et al. Return to sports participation after articular cartilage repair in the knee: scientific evidence. Am J Sports Med 2009; 37(Suppl. 1): 167S-176S.
Mithoefer K, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidencebased systematic analysis. Am J Sports Med 2009; 37(10): 2053-63.
Brittberg M, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331(14): 889-95.
O’Driscoll SW, et al. The chondrogenic potential of periosteum decreases with age. J Orthop Res 2001; 19(1): 95-103.
O’Driscoll SW. Technical considerations in periosteal grafting for osteochondral injuries. Clin Sports Med 2001; 20(2): 379- 402, vii.
Breinan HA, et al. Autologous chondrocyte implantation in a canine model: change in composition of reparative tissue with time. J Orthop Res 2001; 19(3): 482-92.
Breinan HA, et al. Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg Am 1997; 79(10): 1439-51.
Peterson L, et al. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 2010; 38(6): 1117-24.
Knutsen G, et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 2004; 86-A(3): 455-64.
Kuettner KE, et al. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. II. Maintenance of collagen and proteoglycan phenotype. J Cell Biol 1982; 93(3): 751-7.
Kuettner KE, et al. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. I. Isolation, culture characteristics, and morphology. J Cell Biol 1982; 93(3): 743-50.
Kuriwaka M, et al. Optimum combination of monolayer and three-dimensional cultures for cartilage-like tissue engineering. Tissue Eng 2003; 9(1): 41-9.
Marijnissen WJ, et al. Tissue-engineered cartilage using serially passaged articular chondrocytes. Chondrocytes in alginate, combined in vivo with a synthetic (E210) or biologic biodegradable carrier (DBM). Biomaterials 2000; 21(6): 571-80.
Block JA, et al. The effects of long term monolayer culture on the proteoglycan phenotype of a clonal population of mature human malignant chondrocytes. Connect Tissue Res 1991; 26(4): 295-313.
Rixen H, et al. Comparative studies on collagen expression of chondrocytes in monolayer and spheroid culture. Verh Dtsch Ges Pathol 1990; 74: 365-7.
Watt FM. Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. J Cell Sci 1988; 89 (Pt. 3): 373-8.
Nixon AJ. Lust G, Vernier-Singer M. Isolation, propagation, and cryopreservation of equine articular chondrocytes. Am J Vet Res 1992; 53(12): 2364-70.
Paige KT, et al. De novo cartilage generation using calcium alginate- chondrocyte constructs. Plast Reconstr Surg 1996; 97(1): 168-80.
Nixon AJ, et al. Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites. J Orthop Res 1999; 17(4): 475-87.
Fortier LA, Nixon AJ, Lust G. Phenotypic expression of equine articular chondrocytes grown in three-dimensional cultures supplemented with supraphysiologic concentrations of insulinlike growth factor-1. Am J Vet Res 2002; 63(2): 301-5.
Vacanti CA, et al. Joint resurfacing with cartilage grown in situ from cell-polymer structures. Am J Sports Med 1994; 22(4): 485-8.
Vacanti CA, Vacanti JP. Bone and cartilage reconstruction with tissue engineering approaches. Otolaryngol Clin North Am 1994; 27(1): 263-76.
Langer R, Vacanti JP. Tissue engineering. Science 1993; 260(5110): 920-6.
Vacanti CA, et al. Tissue-engineered growth of bone and cartilage. Transplant Proc 1993; 25(1, Pt. 2): 1019-21.
Vacanti CA, et al. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg 1991; 88(5): 753-9.
Nehrer S, et al. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res 1997; 38(2): 95-104.
Nehrer S, et al. Matrix collagen type and pore size influence behavior of seeded canine chondrocytes. Biomaterials 1997; 18(11): 769-76.
Nehrer S, et al. Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials 1998; 19(24): 2313-28.
Marcacci M, et al. Use of autologous grafts for reconstruction of osteochondral defects of the knee. Orthopedics 1999; 22(6): 595-600.
Nehrer S, Spector M, Minas T. Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res 1999; (365): 149-62.
Marcacci M, et al. New cell-based technologies in bone and cartilage tissue engineering. II. Cartilage regeneration. Chir Organi Mov 2003; 88(1): 42-7.
Marcacci M, et al. New cell-based technologies in bone and cartilage tissue engineering. I. Bone reconstruction. Chir Organi Mov 2003; 88(1): 33-42.
Pavesio A, et al. Hyaluronan-based scaffolds (Hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings. Novartis Found Symp 2003; 249: 203-17; 229-41.
Resinger C, Vecsei V, Marlovits S. Therapeutic options in the treatment of cartilage defects. Techniques and indications. Radiologe 2004; 44(8): 756-62.
Dorotka R, et al. Marrow stimulation and chondrocyte transplantation using a collagen matrix for cartilage repair. Osteoarthritis Cartilage 2005; 13(8): 655-64.
Dozin B, et al. Comparative evaluation of autologous chondrocyte implantation and mosaicplasty: a multicentered randomized clinical trial. Clin J Sport Med 2005; 15(4): 220-6.
Marcacci M, et al. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res 2005; (435): 96-105.
Marlovits S, et al. Early postoperative adherence of matrix-induced autologous chondrocyte implantation for the treatment of full-thickness cartilage defects of the femoral condyle. Knee Surg Sports Traumatol Arthrosc 2005; 13(6): 451-7.
Trattnig S, et al. Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging. Magn Reson Imaging 2005; 23(7): 779-87.
Hollander AP, et al. Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees. Tissue Eng 2006; 12(7): 1787-98.
Marlovits S, et al. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 2006; 57(1): 16-23.
Marlovits S, et al. Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol 2006; 57(1): 24-31.
Martelli S, et al. Validation of a new protocol for computer-assisted evaluation of kinematics of double-bundle ACL reconstruction. Clin Biomech 2006; 21(3): 279-87.
Nehrer S, et al. Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur J Radiol 2006; 57(1): 3-8.
Trattnig S, et al. Matrix-based autologous chondrocyte implantation for cartilage repair with Hyalograft C: two-year follow-up by magnetic resonance imaging. Eur J Radiol 2006; 57(1): 9-15.
Marcacci M, et al. Arthroscopic second generation autologous chondrocyte implantation. Knee Surg Sports Traumatol Arthrosc 2007 ; 15(5): 610-9.
Nehrer S, et al. Results of chondrocyte implantation with a fibrin- hyaluronan matrix: a preliminary study. Clin Orthop Relat Res 2008; 466(8): 1849-55.
Schlegel W, et al. Scaffold-dependent differentiation of human articular chondrocytes. Int J Mol Med 2008; 22(5): 691-9.
Gobbi A, et al. Patellofemoral full-thickness chondral defects treated with second-generation autologous chondrocyte implantation: results at 5 years’ follow-up. Am J Sports Med 2009; 37(6): 1083-92.
Kon E, et al. Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. Am J Sports Med 2009; 37(1): 33-41.
Kon E, et al. Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med 2009; 37(Suppl. 1): 156S-166S.
Nehrer S, et al. Treatment of full-thickness chondral defects with hyalograft C in the knee: a prospective clinical case series with 2 to 7 years’ follow-up. Am J Sports Med 2009; 37(Suppl. 1): 81S-87S.
Welsch GH, et al. Tibial cartilage hypertrophy due to matrixassociated autologous chondrocyte transplantation of the medial femoral condyle. A case report. J Bone Joint Surg Am 2009; 91(8): 1996-2001.
Kon E, et al. Second-generation autologous chondrocyte transplantation: MRI findings and clinical correlations at a minimum 5-year follow-up. Eur J Radiol 2010.
Welsch GH, et al. Evaluation of cartilage repair tissue after matrix- associated autologous chondrocyte transplantation using a hyaluronic-based or a collagen-based scaffold with morphological MOCART scoring and biochemical T2 mapping: preliminary results. Am J Sports Med 2010; 38(5): 934-42.
Welsch GH, et al. T2 and T2* mapping in patients after matrixassociated autologous chondrocyte transplantation: initial results on clinical use with 3.0-Tesla MRI. Eur Radiol 2010; 20(6): 1515-23.
Bekkers JE, Inklaar M, Saris DB. Treatment selection in articular cartilage lesions of the knee: a systematic review. Am J Sports Med 2009; 37(Suppl. 1): 148S-155S.
De Windt TS, et al. Patient profiling in cartilage regeneration: prognostic factors determining success of treatment for cartilage defects. Am J Sports Med 2009; 37(Suppl. 1): 58S-62S.
Saris DB, et al. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 2009; 37(Suppl. 1): 10S-19S.
Van Assche D, et al. Autologous chondrocyte implantation versus microfracture for knee cartilage injury: a prospective randomized trial, with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc 2010; 18(4): 486-95.
Rutgers M, et al. Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage. Osteoart Cartilage 2010; 18(1): 12-23.
Saris DB, et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 2008; 36(2): 235-46.
Van den Borne MP, et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoart Cartilage 2007; 15(12): 1397-402.
Ochi M, et al. Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee. J Bone Joint Surg Br 2002; 84(4): 571-8.
Erggelet C, et al. Matrix-augmented autologous chondrocyte implantation in the knee-arthroscopic technique. Oper Orthop Traumatol 2008; 20(3): 199-207.
Ibarra-Ponce-de-León JC, et al. Cartilage repair: cell-based techniques. Act Ortop Mex 2009; 23(1): 38-44.
Masri M, et al. Matrix-encapsulation cell-seeding technique to prevent cell detachment during arthroscopic implantation of matrix-induced autologous chondrocytes. Arthroscopy 2007; 23(8): 877-83.