2013, Número 1
<< Anterior Siguiente >>
Revista del Hospital Psiquiátrico de La Habana 2013; 10 (1)
Epigenética y trastornos del espectro autista
Quintana HD, Lantigua CPA
Idioma: Español
Referencias bibliográficas: 55
Paginas:
Archivo PDF: 124.22 Kb.
RESUMEN
Introducción: los trastornos del espectro autista comprenden un grupo complejo de desórdenes del desarrollo que tienen básicamente un origen genético, caracterizados por deterioro en las áreas de interacción social, comunicación y comportamiento estereotipado y repetitivo. En su patogenia se han involucrado mecanismos epigenéticos como consecuencia de la ocurrencia de dichos trastornos en pacientes con desórdenes donde se han comprobado mutaciones epigenéticas o en otros en que se han implicado factores reguladores epigenéticos.
Objetivo: evidenciar el rol que representan los mecanismos epigenéticos en la susceptibilidad a los trastornos del espectro autista.
Métodos: se realizó la búsqueda en PubMed/MEDLINE en publicaciones de los últimos 10 años, utilizándose solamente aquellas con texto completo e información novedosa sobre el tema.
Desarrollo: los estudios del genoma revelan un posible ligamiento en diferentes loci de numerosos cromosomas. La mayoría de las alteraciones recurrentes desde el punto de vista citogenético en los trastornos del espectro autista implican duplicaciones del locus 15q11–13 materno y deleciones del 7q, regiones estas donde existen evidencias de impronta genómica que sugieren un origen epigenético para dichos trastornos, lo que también ha sido descrito en otras enfermedades de origen genético en el cromosoma X. Se presenta una actualización que evidencia la importancia de la epigenética en la génesis de los trastornos del espectro autista.
Conclusiones: a pesar de los recientes avances en la identificación de genes candidatos de susceptibilidad al autismo, la base neurológica subyacente es aún desconocida, donde los hallazgos epigenéticos en regiones críticas del genoma van encaminando el futuro.
REFERENCIAS (EN ESTE ARTÍCULO)
Levy S. E., Mandell D. S., Schultz R. Autism. Lancet 2009;374: 1627–1638.
Chiocchetti A, Klauck SM. Genetic analyses for identifying molecular mechanisms in autism spectrum disorders. Z Kinder Jugendpsychiatr Psychother 2011;39(2):101-11.
Samaco RC, Hogart A, LaSalle JM. Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum Mol Genet 2005; 14: 483–492.
Gonzales ML, LaSalle JM. The role of MeCP2 in brain development and neurodevelopmental disorders. Curr Psychiatry Rep 2010;12(2):127-34.
Hogart A, Wu D, La Salle JM, Schanen NC. The comorbidity of autism with the genomic disorders of chromosome15q11.2-q13. Neurobiol Dis 2010; 38(2): 181–191.
Schanen NC. Epigenetics of autism spectrum disorders. Hum Mol Genet 2006; 15: 138-50.
A.J. Russo. Autism Etiology: Genes and the Environment. Autism Insights 2009;11–2.
Groom A, Elliott HR, Embleton ND, Relton CL. Epigenetics and child health: basic principles. Arch Dis Child 2011;96:863–869.
Grafodatskaya D, Chung B, Szatmari P, Weksberg R. Autism spectrum disorders and epigenetics. J Am Acad Child Adolesc Psychiatry. 2010;49(8):794-809.
Miyake K, Hirasawa T, Koide T, Kubota T. Epigenetics in autism and other neurodevelopmental diseases. Adv Exp Med Biol 2012;724:91-8.
Cunningham MD, Kassis JA, Pfeifer K. Chromatin modifiers, cognitive disorders, and imprinted genes. Dev Cell 2010;18(2):169-70.
Na ES, Monteggia LM. The role of MeCP2 in CNS development and function. Horm Behav 2011; 59(3): 364–368.
Jobe EM, McQuate AL, Zhao X. Crosstalk among Epigenetic Pathways Regulates Neurogenesis. Front Neurosci 2012;6:59.
Díaz de León Guerrero S, Pedraza Alva G; Pérez Martínez. In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. Review. Eur J Neurosci 2011; 33: 1563–1574.
McDuffie A, Abbeduto L, Lewis P, Kover S, Kim JS, Weber A, et al .Autism Spectrum Disorder in Children and Adolescents with Fragile X Síndrome: Within-Syndrome Differences and Age- Related Changes. Am J Intellect Dev Disabil 2010;115(4):307-26.
Levenson JM, Qiu S, Weeber EJ. The role of reelin in adult synaptic function and the genetic and epigenetic regulation of the reelin gene. Biochim Biophys Acta 2008;1779(8):422-31.
Hellwig S, Hack I, Kowalski J, Brunne B, Jarowyj J, Unger A et al. Role for Reelin in neurotransmitter release. J Neurosci 2011;31(7):2352-60.
Freitag CM, Staal W, Klauck SM, Duketis E, Waltes R. Genetics of autistic disorders: review and clinical implications. Eur Child Adolesc Psychiatry 2010; 19(3):169-78.
Chamberlain SJ, Lalande M. Neurodevelopmental disorders involving genomic imprinting at human chromosome 15q11-q13. Neurobiol Dis 2010;39(1):13-20.
Johnson IT, Belshaw NJ. Environment, diet and CpG island methylation: epigenetic signals in gastrointestinal neoplasia. Food Chem Toxicol 2008;46:1346–59.
De Haan JB, Gevers W, Parker MI. Effects of sodium butyrate on the synthesis and methylation of DNA in normal cells and their transformed counterparts. Cancer Res 1986;46:713–16.
Weaver IC, Champagne FA, Brown SE, Dymov S, Sharma S, Meaney MJ, Szyf M. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 2005; 25: 11045–11054.
Bayou N, M'rad R, Ahlem B, Béchir Helayem M, Chaabouni H. Autism: an overview of genetic aetiology. Tunis Med 2008; 86(6):573-8.
Autism Genome Project Consortium (AGPC), Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ, et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 2007; 39(3):319-28.
Kumar RA, Christian SL. Genetics of autism spectrum disorders. Curr Neurol Neurosci Rep 2009; 9(3):188-97.
Simon EW, Haas-Givler B, Finucane B. A Longitudinal Follow-Up Study of Autistic Symptoms in Children and Adults UIT Duplications of 15q11-13. Am J Med Genet Part B 2010;153B:463–467.
Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2010; 82:477–488.
Battaglia A. The inv dup (15) or idic (15) syndrome (Tetrasomy 15q). Orphanet J Rare Dis 2008; 3: 30.
Fradin D, Cheslack-Postava K, Ladd-Acosta C, Newschaffer C, Chakravarti A, Arking DE, Feinberg A, Fallin MD. Parent-of-origin effects in autism identified through genome-wide linkage analysis of 16,000 SNPs. PLoS One 2010;5(9). pii: e12513.
Guffanti G, Strik Lievers L, Bonati MT, Marchi M, Geronazzo L, Nardocci N et al. Role of UBE3A and ATP10A genes in autism susceptibility region 15q11-q13 in an Italian population: a positive replication for UBE3A. Psychiatry Res 2011;185(1-2):33-8.
Hogart A, Leung KN, Wang NJ, Wu DJ, Driscoll J, Vallero RO, Schanen NC, LaSalle JM. Chromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number. J Med Genet 2009; 46(2):86-93.
Chibuk TK, Bischof JM, Wevrick R. A necdin/MAGE-like gene in the chromosome 15 autism susceptibility region: expression, imprinting, and mapping of the human and mouse orthologues. BMC Genet 2001;2:22.
Kuwajima T, Nishimura I, Yoshikawa K. Necdin promotes GABAergic neuron differentiation in cooperation with Dlx homeodomain proteins. J Neurosci 2006;26(20):5383-92.
Horsthemke B, Wagstaff J. 2008. Mechanisms of imprinting of the Prader–Willi/Angelman region. Am J Med Genet Part A 2008;146A:2041–2052.
Yasui DH, Scoles HA, Horike S, Meguro-Horike M, Dunaway KW, Schroeder DI, Lasalle JM. 15q11.2-13.3 chromatin analysis reveals epigenetic regulation of CHRNA7 with deficiencies in Rett and autism brain. Hum Mol Genet 2011;20(22):4311-23.
Online Mendelian Inheritance in Man. 2007. Center for Medical Genetics, John Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD). URL:http://omim.org/entry/118511. [29.07.2012]
Hogart A, Nagarajan RP, Pastel KA, Yasui DH, LaSalle JM. 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Hum Mol Genet 2007;16(6): 691–703.
Sernagor E, Chabrol F, Bony G, Cancedda L. GABAergic control of neurite out growth and remodeling during development and adult neurogenesis: gen eral rules and difference sin diverse systems. Front Cell Neurosci 2010;4:11.
Yasuhara A. Correlation between EEG abnormalities and symptoms of autism spectrum disorder (ASD). Brain Dev 2010; 32: 791–798.
Fatemi SH, Reutiman TJ, Folsom TD, Rooney RJ, Patel DH, Thuras PD. mRNA and protein levels for GABA Aα4, α5, β1 and GABABR1 receptors are altered in brains from subjects with autism. J Autism Dev Disord 2010;40:743– 750.
Pizzarelli R, Cherubini E. Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast 2011; 2011:297153.
Jiang YH, Sahoo T, Michaelis RC, Bercovich D, Bressler J, Kashork CD, et al. A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. Am J Med Genet A 2004;131: 1–10.
Nakashima N, Yamagata T, Mori M, Kuwajima M, Suwa K, Momoi MY. Expression analysis and mutation detection of DLX5 and DLX6 in autism. Brain Dev 2010;32(2):98-104.
Schüle B, Li HH, Fisch-Kohl C, Purmann C, Francke U. DLX5 and DLX6 Expression Is Biallelic and Not Modulated by MeCP2 Deficiency. Am J Hum Genet 2007; 81(3):492-506.
Benítez-Burraco A. Autismo y lenguaje: aspectos moleculare
s. Rev Neurol 2008; 46: 40-8.
Schneider E, Mayer S, El Hajj N, Jensen LR, Kuss AW, Zischler H, et al. Methylation and Expression Analyses of the 7q Autism Susceptibility Locus Genes MEST , COPG2, and TSGA14 in Human and Anthropoid Primate Cortices. Cytogenet Genome Res 2012;136(4):278-87.
Pedersen A, Pettygrove S, Meaney FJ, Mancilla K, Gotschall K, Kessler DB, et al. Prevalence of autism spectrum disorders in Hispanic and non-Hispanic white children. Pediatrics 2012;129(3):629-35.
Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, et al. Why Are Autism Spectrum Conditions More Prevalent in Males? PLoS Biol 2011; 9(6): e1001081.
Skuse DH, James RS, Bishop DV, Coppin B, Dalton P, Aamodt-Leeper G, et al. Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function. Nature 1997; 387:705–708.
Álvarez-Alcántara E. Trastornos del espectro autista. Rev Mex Pediatr 2007; 74(6): 269-276.
Benítez-Burraco A. Aspectos moleculares de los trastornos cognitivos ligados al cromosoma X que conllevan una disfunción del lenguaje. Rev Ecuat Neurol 2007; 16(3):185-99.
De Rubeis S, Bagni C. Regulation of molecular pathways in the Fragile X Syndrome: insights into Autism Spectrum Disorders. J Neurodev Disord 2011;3(3):257-69.
De Rubeis S, Bagni C. Fragile X mental retardation protein control of neuronal mRNA metabolism: insights into mRNA stability. Mol Cell Neurosci 2010;43:43–50.
Chattopadhyaya B, Cristo GD. GABAergic circuit dysfunctions in neurodevelopmental disorders. Front Psychiatry 2012;3:51.