2008, Número 5
<< Anterior Siguiente >>
Rev Invest Clin 2008; 60 (5)
Aspectos moleculares de la fecundación: unión y fusión de gametos
Cánovas S, Coy P
Idioma: Español
Referencias bibliográficas: 79
Paginas: 403-413
Archivo PDF: 126.56 Kb.
RESUMEN
La fecundación es un complejo y fascinante proceso biológico. Las interacciones entre gametos transforman dos células diferenciadas en un cigoto totipotente. Diferentes proteínas de la superficie celular de ambos gametos han sido identificadas por su participación en la unión y fusión de gametos. La interacción se inicia con la adhesión del espermatozoide a la zona pelúcida. Esta unión presenta restricciones según las especies y es mediada por la proteína
SED1 y/o la unión de la galactosiltransferasa (GalT-I) a las cadenas de glúcidos de la zona pelúcida (ZP3), desencadenando la reacción acrosómica. Entre las moléculas que participan en la unión y fusión de gametos se incluyen las desintegrinas del espermatozoide (
ADAM1 y
ADAM2), las cuales interactúan con las integrinas (
α6/β-1, CD9 o proteínas ancladas a
GPI) del oolema, mientras que en la fusión participan las proteínas secretoras ricas en cisteína (
CRISP) y las proteínas
Izumo. El conocimiento de las moléculas y los mecanismos implicados en estos procesos nos permitirá un mejor entendimiento de las interacciones espermatozoide-ovocito, y el desarrollo de nuevos métodos, tanto para la regulación de la fertilidad, como para el diagnóstico y tratamiento clínico de los problemas de infertilidad en mamíferos, incluida la especie humana.
REFERENCIAS (EN ESTE ARTÍCULO)
Miller DJ, Shi X, Burkin H. Molecular basis of mammalian gamete binding. Recent Prog Horm Res 2002; 57: 37-73.
Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod 2007; 22: 1506-12.
Zhu JL, Basso O, Obel C, Bille C, Olsen J. Infertility, infertility treatment, and congenital malformations: Danish national birth cohort. BMJ 2006; 333: 679.
Austin CR. The “capacitation” of the mammalian sperm. Nature 1952; 170: 326.
Chang MC. Fertilizing capacity of spermatozoa deposited into fallopian tubes. Nature 1951; 168: 697-8.
Salicioni AM, Platt MD, Wertheimer EV, Arcelay E, Allaire A, Sosnik J, Visconti PE. Signalling pathways involved in sperm capacitation. Soc Reprod Fertil 2007; (Suppl. 65): 245-59.
Meyers SA, Rosenberger AE. A plasma membrane-associated hyaluronidase is localized to the posterior acrosomal region of stallion sperm and is associated with spermatozoal function. Biol Reprod 1999; 61: 444-51.
Kim E, Baba D, Kimura M, Yamashita M, Kashiwabara S, Baba T. Identification of a hyaluronidase, Hyal5, involved in penetration of mouse sperm through cumulus mass. PNAS 2005; 102: 18028-33.
Rankin T, Dean J. The zona pellucida: using molecular genetics to study the mammalian egg coat. Rev Reprod 2000; 5: 114-21.
Hoodbhoy T, Joshi S, Boja ES, Williams SA, Stanley P, Dean J. Human sperm do not bind to rat zonae pellucidae despite the presence of four homologous glycoproteins. J Biol Chem 2005; 280: 12721-31.
Vieira A, Miller DJ. Gamete interaction: is it species-specific? Mol Reprod Dev 2006; 73: 1422-9. Review.
Dell A, Morris HR, Easton RL, Patankar M, Clark GF. The glycobiology of gametes and fertilization. Biochim Biophys Acta 1999; 1473: 196-205.
Wassarman PM. Contribution of mouse egg zona pellucida glycoproteins to gamete recognition during fertilization. J Cell Physiol 2005; 204: 388-91.
Nixon B, Aitken RJ, McLaughlin EA. New insights into the molecular mechanisms of sperm-egg interaction. Cell Mol Life Sci 2007; 64(14): 1805-23. Review.
Lefievre L, Conner SJ, Salpekar A, Olufowobi O, Ashton P, et al. Four zona pellucida glycoproteins are expressed in the human. Hum Reprod 2004; 19:1580-6.
Jimenez-Movilla M, Aviles M, Gomez-Torres MJ, Fernandez- Colom PJ, et al. Carbohydrate analysis of the zona pellucida and cortical granules of human oocytes by means of ultrastructural cytochemistry. Hum Reprod 2004; 19: 1842-55.
Yanagimachi R. Mammalian fertilization. In: Knobil E, Neil JD (eds.). Physiology of Reproduction. 2a. Ed. New York: Raven Press; 1994, p. 189-317.
Rath D, Topfer-Petersen E, Michelmann HW, Schwartz P, von Witzendorff D, et al. Structural, biochemical and functional aspects of sperm-oocyte interactions in pigs. Soc Reprod Fertil 2006; (Suppl. 62): 317-30.
Tsaadon A, Eliyahu E, Shtraizent N, Shalgi R. When a sperm meets an egg: block to polyspermy. Mol Cell Endocrinol 2006; 252: 107-14.
Sinowatz F, Wessa E, Neumuller C, Palma G. On the species Specificity of sperm binding and sperm penetration of the zona pellucida. Reprod Dom Anim 2003; 38: 141-6.
Canovas S, Coy P, Gomez E. First steps in the development of a functional assay for human sperm using pig oocytes. J Androl 2007; 28: 273-81.
Rankin TL, Coleman JS, Epifano O, Hoodbhoy T, Turner SG, Castle PE, Lee E, Gore-Langton R, Dean J. Fertility and taxon-specific sperm binding persist after replacement of mouse sperm receptors with human homologs. Dev Cell 2003; 5: 33-43.
Dean J. Reassessing the molecular biology of esperm-egg recognition with mouse genetics. Bioessays 2004; 26: 29-38.
Yonezawa N, Fukui N, Kuno M, Shinoda M, Goko S, Mitsui S, Nakano M. Molecular cloning of bovine zona pellucida glycoproteins ZPA and ZPB and analysis for sperm-binding component of the zona. Eur J Biochem 2001; 268: 3587-94.
Miller DJ, Macek MB, Shur BD. Complementarity between sperm surface beta-1,4-galactosyltransferase and egg-coat ZP3 mediates sperm-egg binding. Nature 1992; 357: 589-93.
Yonezawa N, Amari S, Takahashi K, Ikeda K, Imai FL, Kanai S, et al. Participation of the nonreducing terminal beta-galactosyl residues of the neutral N-linked carbohydrate chains of porcine zona pellucida glycoproteins in sperm-egg binding. Mol Reprod Dev 2005; 70: 222-7.
Amari S, Yonezawa N, Mitsui S, Katsumata T, Hamano S, et al. Essential role of the nonreducing terminal alpha-mannosyl residues of the N-linked carbohydrate chain of bovine zona pellucida glycoproteins in sperm-egg binding. Mol Reprod Dev 2001; 59: 221-6.
Velasquez JG, Canovas S, Barajas P, Marcos J, Jimenez-Movilla M, et al. Role of sialic acid in bovine sperm-zona pellucida binding. Mol Reprod Dev 2007; 74: 617-28.
Clark GF, Dell A. Molecular models for murine sperm-egg binding. J Biol Chem 2006; 281: 13853-6. Review.
Yu Y, Xu W, Yi YJ, Sutovsky P, Oko R. The extracellular protein coat of the inner acrosomal membrane is involved in zona pellucida binding and penetration during fertilization: characterization of its most prominent polypeptide (IAM38). Dev Biol 2006; 290: 32-43.
Gaboriau D, Howes EA, Clark J, Jones R. Binding of sperm proacrosin/beta-acrosin to zona pellucida glycoproteins is sulfate and stereodependent. Synthesis of a novel fertilization inhibitor. Dev Biol 2007; 306: 646-57.
Shur BD, Rodeheffer C, Ensslin MA, Lyng R, Raymond A. Identification of novel gamete receptors that mediate sperm adhesion to the egg coat. Mol Cell Endocrinol 2006; 250: 137-48.
Zitta K, Wertheimer EV, Miranda PV. Sperm N-acetylglucosaminidase is involved in primary binding to the zona pellucida. Mol Hum Reprod 2006; 12: 557-63.
Rodeheffer C, Shur BD. Characterization of a novel ZP3-independent sperm-binding ligand that facilitates sperm adhesion to the egg coat. Development 2004; 131: 503-12.
Ensslin MA, Shur BD. Identification of mouse sperm SED1, a bimotif EGF repeat and discoidin-domain protein involved in sperm-egg binding. Cell 2003; 114: 405-17.
Ensslin MA, Lyng R, Raymond A, Copland S, Shur BD. Novel gamete receptors that facilitate sperm adhesion to the egg coat. Soc Reprod Fertil 2007; (Suppl. 63): 367-83.
Ensslin M, Vogel T, Calvete JJ, Thole HH, et al. Molecular cloning and characterization of P47, a novel boar sperm-associated zona pellucida-binding protein homologous to a family of mammalian secretory proteins. Biol Reprod 1998; 58: 1057-64.
Mayorga LS, Tomes CN, Belmonte SA. Acrosomal exocytosis, a special type of regulated secretion. IUBMB Life 2007; 59: 286-92.
Herrick SB, Schweissinger DL, Kim SW, Bayan KR, Mann S, Cardullo RA. The acrosomal vesicle of mouse sperm is a calcium store. Cell Physiol 2005; 202: 663-71.
Neild DN, Gadella BM, Agüero A, Stout TA, Colenbrander B. Capacitation, acrosome function and chromatin structure in stallion sperm. Anim Reprod Sci 2005; 89: 47-56.
Baibakov B, Gauthier L, Talbot P, Rankin TL, Dean J. Sperm binding to the zona pellucida is not sufficient to induce acrosome exocytosis. Development 2007; 134: 933-43.
Kim KS, Gerton GL. Differential release of soluble and matrix components: evidence for intermediate states of secretion during spontaneous acrosomal exocytosis in mouse sperm. Dev Biol 2003; 264: 141-52.
Darszon A, Beltrán C, Felix R, Nishigaki T, Treviño CL. Ion transport in sperm signaling. Dev Biol 2001; 240: 1-14. Review.
Publicover S, Harper CV, Barratt C. [Ca2+]i signalling in sperm—making the most of what you’ve got. Nat Cell Biol 2007; 9: 235-42. Review.
Darszon A, Acevedo JJ, Galindo BE, Hernández-González EO, et al. Sperm channel diversity and functional multiplicity. Reproduction 2006; 131: 977-88.
O’Toole CM, Arnoult C, Darszon A, Steinhardt RA, Florman HM. Ca(2+) entry through store-operated channels in mouse sperm is initiated by egg ZP3 and drives the acrosome reaction. Mol Biol Cell 2000; 11: 1571-84.
De Blas G, Michaut M, Treviño CL, Tomes CN, Yunes R, Darszon A, Mayorga LS. The intraacrosomal calcium pool plays a direct role in acrosomal exocytosis. J Biol Chem 2002; 277: 49326-31.
Witte TS, Schäfer-Somi S. Involvement of cholesterol, calcium and progesterone in the induction of capacitation and acrosome reaction of mammalian spermatozoa. Anim Reprod Sci 2007; 102: 181-93.
Florman H, Ducibella T. Mammalian fertilization. In: Neill JD (ed.). Knobil and Neill’s: Physiology of reproduction. 3a. Ed. Amsterdam: Elsevier; 2006, p. 55-112.
Tao J, Wu Y, Chen J, Zhu H, Li S. Effects of urocortin on Ttype calcium currents in mouse spermatogenic cells. Biochem Biophys Res Commun 2005; 329: 743-8.
Xiao H, Zhang XC, Zhang L, Dai XQ, et al. Fenvalerate modifies T-type Ca2+ channels in mouse spermatogenic cells. Reprod Toxicol 2006; 21: 48-53.
Breitbart H, Rubinstein S, Lax Y. Regulatory mechanisms in acrosomal exocytosis. Rev Reprod 1997; 2: 165-74.
Roldan ER, Shi QX. Sperm phospholipases and acrosomal exocytosis. Front Biosci 2007; 12: 89-104. Review.
Putney JW. Capacitative calcium entry revisited. Cell Calcium 1990; 11: 611-24.
Jungnickel MK, Marrero H, Birnbaumer L, Lémos JR, Florman HM. Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 2001; 3: 499-502.
Roldan ER, Murase T, Shi QX. Exocytosis in spermatozoa in response to progesterone and zona pellucida. Science 1994; 266: 1578-81.
Breitbart H, Cohen G, Rubinstein S. Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reproduction 2005; 129: 263-8.
Tomes CN. Molecular mechanisms of membrane fusion during acrosomal exocytosis. Soc Reprod Fertil 2007; (Suppl. 65): 275-291. Review.
Tomes CN, Michaut M, De Blas G, Visconti P, Matti U, Mayorga LS. SNARE complex assembly is required for human sperm acrosome reaction. Dev Biol 2002; 243: 326-38.
Evans JP. The molecular basis of sperm-oocyte membrane interactions during mammalian fertilization. Human Reproduction Update 2002; 8: 297-311.
Primakoff P, Myles DG. Cell-cell membrane fusion during mammalian fertilization. FEBS Lett 2007; 581: 2174-80.
Inoue N, Ikawa M, Isotani A, Okabe M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 2005; 434: 234-8.
Pate BJ, White KL, Chen D, Aston KI, et al. A novel approach to identify bovine sperm membrane proteins that interact with receptors on the vitelline membrane of bovine oocytes. Mol Reprod Dev 2007; 75: 641-9.
Kaji K, Kudo A. The mechanism of sperm-oocyte fusion in mammals. Reproduction 2004; 127: 423-9.
Rubinstein E, Ziyyat A, Prenant M, Wrobel E, et al. Reduced fertility of female mice lacking CD81. Dev Biol 2006; 290: 351-8.
Talbot P, Shur BD, Myles DG. Cell adhesion and fertilization: steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion. Biol Reprod 2003; 68:1-9.
Jahn R, Grubmuller H. Membrane fusion. Curr Opin Cell Biol 2002; 14(4): 488-95.
Yanagimachi R. Sperm-egg fusion. Curr Top Membr Transp 1988; 32: 3-43.
Runge KE, Evans JE, He ZY, Gupta S, McDonald KL, et al. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev Biol 2007; 304: 317-25.
Green DP. Mammalian fertilization as a biological machine: a working model for adhesion and fusion of sperm and oocyte. Hum Reprod 1993; 8: 91-6.
Jury JA, Frayne J, Hall L. The human fertilin alpha gene is non-functional: implications for its proposed role in fertilization. Biochem J 1997; 321: 577-81.
Myles DG, Kimmel LH, Blobel CP, White JM, Primakoff P. Identification of a binding site in the disintegrin domain of fertilin required for sperm-egg fusion. PNAS USA 1994; 91: 4195-8.
Nishimura H, Cho C, Branciforte DR, Myles DG, Primakoff P. Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev Biol 2001; 233: 204-13.
Kim E, Yamashita M, Nakanishi T, Park KE, et al. Mouse sperm lacking ADAM1b/ADAM2 fertilin can fuse with the egg plasma membrane and effect fertilization. J Biol Chem 2006; 281: 5634-9.
Da Ros V, Busso D, Cohen DJ, Maldera J, Goldweic N, Cuasnicu PS. Molecular mechanisms involved in gamete interaction: evidence for the participation of cysteine-rich secretory proteins (CRISP) in sperm-egg fusion. Soc Reprod Fertil 2007; (Suppl 65): 353-6.
Toshimori K, Saxena DK, Tanii I, Yoshinaga K. An MN9 antigenic molecule, equatorin, is required for successful spermoocyte fusion in mice. Biol Reprod 1998; 59: 22-9.
Kaji K, Oda S, Miyazaki S, Kudo A. Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81; polyadenylated mRNA injection developed for molecular analysis of sperm-egg fusion. Dev Biol 2002; 247: 327-34.
Ziyyat A, Rubinstein E, Monier-Gavelle F, et al. CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. J Cell Sci 2006; 3: 416-24.
Zhu X, Evans JP. Analysis of the roles of RGD-binding integrins, alpha(4)/alpha(9) integrins, alpha(6) integrins, and CD9 in the interaction of the fertilin beta (ADAM2) disintegrin domain with the mouse egg membrane. Biol Reprod 2002; 66: 1193-202.