2009, Número 6
<< Anterior
Rev Invest Clin 2009; 61 (6)
Esteroides sexuales e inmunidad: el papel del estradiol sobre las células dendríticas
Togno-Peirce C, Morales-Montor J
Idioma: Español
Referencias bibliográficas: 71
Paginas: 521-532
Archivo PDF: 181.21 Kb.
RESUMEN
El estradiol (17β-estradiol) es una hormona esteroidea que tiene efectos biológicos bien conocidos en diferentes especies de vertebrados. Sus efectos se han descrito principalmente en el desarrollo de los caracteres sexuales, sobre la fertilidad, e incluso en la sobrevivencia de las neuronas. Además de participar en estos procesos biológicos, se ha demostrado que existen diversos efectos del estradiol sobre varias funciones del sistema inmune. Debido a su participación en la regulación de las respuestas inmune, se le ha relacionado en el dimorfismo sexual inmunitario, a la frecuencia de enfermedades autoinmunes, y a la resistencia o susceptibilidad a varias infecciones, tanto virales y bacterianas, como parasitarias.
Las células dendríticas CDs (utilizaremos la abreviatura DCs, por sus siglas en inglés, que usaremos a lo largo de este escrito para evitar confusión con el término CD “cluster of differentiation”) poseen un papel central en la activación de la respuesta inmune y en el mantenimiento de la tolerancia. En los últimos años, se ha demostrado que el estradiol regula la diferenciación, y algunas otras funciones de las DCs, tanto
in vitro, como
in vivo. En general, es importante destacar que el estradiol puede tener efectos benéficos o perjudiciales, dependiendo del contexto fisiológico. El presente trabajo presenta un resumen de los efectos descritos del estradiol sobre las DCs, comparando la información obtenida de los estudios
in vitro contra los efectos del estradiol sobre las DCs
in vivo, haciendo énfasis en su papel durante la enfermedad y el posible uso de ésta información para su aplicación clínica.
REFERENCIAS (EN ESTE ARTÍCULO)
Besedosvsky HO, del Rey A. Immune-Neuro-Endocrine interactions: Facts and Hypotheses. Endocrine Rev 1996; 17: 64-102.
Whitacre CC, Reingold SC, O’Looney PA. A gender gap in autoimmunity. Science 1999; 283: 1277-8.
De León-Nava MA, Morales-Montor J. Immune sexual dimorphism: can sex steroids affect the Th1/Th2 cytokine profile?. Rev Invest Clin 2006; 58: 161-169.
Klein SL. The effects of hormones on sex differences in infection: from genes to behavior. Neurosci Biobehav Rev 2000; 24: 627-638.
Roberts CW, Walker W, Alexander J. Sex-associated hormones and immunity to protozoan parasites. Clin Microbiol Rev 2001; 14: 476-88.
Morales-Montor J, Baig S, Hallal-Calleros C, Damian RT. Taenia crassiceps: androgen reconstitution of the host leads to protection during cysticercosis. Experi Parasitol 2002; 100: 209-16.
Matejuk A, Bakke AC, Hopke C, Dwyer J, Vandenbark AA, Offner H. Estrogen Treatment Induces a Novel Population of Regulatory Cells, Which Suppresses Experimental Autoimmune Encephalomyelitis. J Neuroscience Res 2004; 77: 119-26.
Blander JM. Signalling and phagocytosis in the orchestration of host defence. Cell Microbiol 2007; 9: 849-50.
Steinman RM. The control of immunity and tolerance by dendritic cell. Pathol Biol 2003; 51: 59-60.
Böttcher I, Bellinghausen I, König B, Knop J, Saloga J. Different regulation of T helper 1- and T helper 2-promoting cytokine signalling factors in human dendritic cells after exposure to protein versus contact allergens. Immunol 2008; 123: 139-44.
Collins M, Ling V, Carreno BM. The B7 family of immune-regulatory ligands. Genome Biol 2005; 6(6): 223 (doi:10.1186/ gb-2005-6-6-223).
Fujita S, Seino K, Sato K, Sato Y, Eizumi K, et al. Regulatory dendritic cells act as regulators of acute lethal systemic inflammatory response. Blood 2006; 107: 3656-64.
Fonteneau JF, Gilliet M, Larsson M, Dasilva I, Muñiz C, et al. Activation of influenza virus–specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood 2003; 101: 3520-6.
Chan CW, Housseau F. The ‘kiss of death’ by dendritic cells to cancer cells. Cell Death Differ 2008; 15: 58-69.
Sato K, Fujita S. Dendritic Cells-Nature and Classification. Allergol International 2007; 56: 183-91.
Naik SH. Demystifying the development of dendritic cell subtypes, a little. Immunol Cell Biol 2008; 86: 439-52.
Smit JJ, Lindell DM, Boon L, Kool M, Lambrecht BN, Lukacs NW. The balance between plasmacytoid DC versus conventional DC determines pulmonary immunity to virus infections. PLoS ONE 2008; 3(3): e1720.
Taieb J, Chaput N, Ménard C, et al. A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med 2006; 12: 214-19.
Spits H, Lanier LL. Natural killer or dendritic: what’s in a name? Immunity 2007; 26: 11-16.
Vosshenrich CA, Lesjean-Pottier S, Hasan M, Richard-Le Goff O, Corcuff E, et al. CD11cloB220+ interferon-producing killer dendritic cells are activated natural killer cells. J Exp Med 2007; 204: 2569-78.
Welner RS, Pelayo R, Garrett KP, Chen X, Perry SS, et al. Interferon- producing killer dendritic cells (IKDCs) arise via a unique differentiation pathway from primitive c-kitHiCD62L+ lymphoid progenitors. Blood 2007; 109(11): 4825-31.
Chen JQ, Delannoy M, Cooke C, Yager JD. Mitochondrial localization of ERalpha and ERbeta in human MCF7 cells. Am J Physiol Endocrinol 2004; 286: E1011-E1022.
Madak-Erdogan Z, Kieser KJ, Kim SH, Komm B, Katzenellenbogen JA, Katzenellenbogen BS. Nuclear and extranuclear pathway inputs in the regulation of global gene expression by estrogen receptors. Mol Endocrinol 2008; 22: 2116-27.
D’Amico A, Wu L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J Exp Med 2003; 198: 293-303.
Kiertscher SM, Roth MD. Human CD14+ leukocytes acquire the phenotype and function of antigen-presenting dendritic cells when cultured in GM-CSF and IL-4. J Leukoc Biol 1996; 59: 208-18.
Jacobs B, Wuttke M, Papewalis C, Seissler J, Schott M. Dendritic cell subtypes and in vitro generation of dendritic cells. Horm Metab Res 2008; 40: 99-107.
Angelov GS, Tomkowiak M, Marcais A, Leverrier Y, Marvel J. Flt3 Ligand-Generated Murine Plasmacytoid and Conventional Dendritic Cells Differ in Their Capacity to Prime Naive CD8 T Cells and to Generate Memory Cells In Vivo. J Immunol 2005; 175: 189-95.
Fleetwood AJ, Cook AD, Hamilton JA. Functions of granulocyte- macrophage colony-stimulating factor. Crit Rev Immunol 2005; 25: 405-08.
Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 1996; 184: 1953-62.
McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 2000; 95: 3489-97.
Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci USA 1986; 83: 2496-2500.
Paharkova-Vatchkova V, Maldonado R, Kovats S. Estrogen preferentially promotes the differentiation of CD11c + CD11b(intermediate) dendritic cells from bone marrow precursors. J Immunol 2004; 172: 1426-36.
Uemura Y, Liu TY, Narita Y, Suzuki M, Matsushita S. 17 Betaestradiol (E2) plus tumor necrosis factor-alpha induces a distorted maturation of human monocyte-derived dendritic cells and promotes their capacity to initiate T-helper 2 responses. Hum Immunol 2008; 69: 149-57.
Siracusa MC, Overstreet MG, Housseau F, Scott AL, Klein SL.17b-Estradiol Alters the Activity of Conventional and IFN-Producing Killer Dendritic Cells. J Immunol 2008; 180: 1423-31.
Mao A, Paharkova-Vatchkova V, Hardy J, Miller MM, Kovats S. Estrogen selectively promotes the differentiation of dendritic cells with characteristics of Langerhans cells. J Immunol 2005; 175: 5146-51.
Douine-Echinard V, Laffont S, Seillet C, Delpy L, Krust A, et al. Estrogen Receptor a, but Not b, Is Required for Optimal Dendritic Cell Differentiation and of CD40-Induced Cytokine Production. J Immunol 2008; 180: 3661-9.
Carreras E, Turner S, Paharkova-Vatchkova V, Mao A, Dascher C, Kovats S. Estradiol Acts Directly on Bone Marrow Myeloid Progenitors to Differentially Regulate GM-CSF or Flt3 Ligand-Mediated Dendritic Cell Differentiation. J. Immunol 2008; 180: 727-38.
Kawasaki T, Choudhry MA, Suzuki T, Schwacha MG, Bland KI, Choudhry IH. 17b-Estradiol’s salutary effects on splenic dendritic cell functions following trauma-hemorrhage are mediated via estrogen receptor-a. Mol Immunol 2008; 45(2): 376-85.
Sapino A, Cassoni P, Ferrero E, Bongiovanni M, Righi L, et al. Estrogen receptor {alpha} is a novel marker expressed by follicular dendritic cells in lymph nodes and tumor-associated lymphoid infiltrates. Am J Pathol 2003; 163: 1313-20.
Yang L, Hu Y, Hou Y. Effects of 17b-estradiol on the maturation, nuclear factor kappa B p65 and functions of murine spleen CD11c-positive dendritic cells. Mol Immunol 2006; 43: 357-366.
Liu HY, Buenafe AC, Matejuk A, Ito A, Zamora A, et al. Estrogen Inhibition of EAE Involves Effects on Dendritic Cell Function. J Neuroscience Res 2002; 70: 238-48.
Harman BC, Miller JP, Nikbakht N, Gerstein R, Allman D. Mouse plasmacytoid dendritic cells derive exclusively from estrogen- resistant myeloid progenitors. Blood 2006; 108: 878-85.
Kawasaki T, Choudhry MA, Schwacha MG, Fujimi S, Lederer JA, et al. Trauma-hemorrhage inhibits splenic dendritic cell proinflammatory cytokine production via a mitogen-activated protein kinase process. Am J Physiol Cell Physiol 2008; 294: 754-64.
Raju R, Bland KI, Chaudry IH. Estrogen: A Novel Therapeutic Adjunct for the Treatment of Trauma-Hemorrhage-Induced Immunological Alterations. Mol Med 2008; 14: 213-21.
Angele MK, Frantz MC, Chaudry IH. Gender and sex hormones influence the response to trauma and sepsis: potential therapeutic approaches. Clinics 2006; 61: 479-88.
Kawasaki T, Fujimi S, Lederer JA, Hubbard WJ, Choudhry MA, et al. Trauma-hemorrhage induces depressed splenic dendritic cell functions in mice. J Immunol 2006; 177: 4514-20.
Kawasaki T, Choudhry MA, Suzuki T, Schwacha MG, Bland KI, Chaudry IH. 17b-estradiol’s salutary effects on splenic dendritic cell functions following traumahemorrhage are mediated via estrogen receptor alpha. Mol Immunol 2008; 45: 376-85.
Wingerchuk DM, Lucchinetti CF, Noseworthy JH. Multiple sclerosis: current pathophysiological concepts. Lab Invest 2001; 81: 263-81.
Baxter AG. The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 2007; 7: 904-12.
Eskandari F, Webster JI, Sternberg EM. Neural immune pathways and their connection to inflammatory diseases. Arthritis Res Ther 2003; 5: 251-65.
Andrés C, Rodríguez-Sáinz MC, Muñoz-Fernández MA, López-Lazareno N, Rodríguez-Mahou M, Vicente A, et al. Short-term sequential analysis of sex hormones and helper T cells type 1 (Th1) and helper T cells type 2 (Th2) cytokines during and after multiple sclerosis relapse. Eur Cytokine Netw 2004; 15: 197-202.
Spangelo BL, Judd AM, Isakson PC, McLeod R. Interleukin-6 stimulates anterior pituitary hormones release in vitro. Endocrinol 1989; 125: 575-80.
Vukusic S, Hutchinson M, Hours M, Moreau T, Cortinovis- Tourniaire P, Adeleine P, Confavreux C, The Pregnancy In Multiple Sclerosis Group. Pregnancy and multiple sclerosis (the PRIMS study): clinical predictors of post-partum relapse. Brain 2004; 127: 1353-1360.
McClain MA, Gatson NN, Powell ND, Papenfuss TL, Gienapp IE, et al. Pregnancy suppresses experimental autoimmune encephalomyelitis through immunoregulatory cytokine production. J Immunol 2007; 179(12): 8146-52.
Langer-Gould A, Garren H, Slansky A, Ruiz PJ, Steinman L. Late Pregnancy Suppresses Relapses in Experimental Autoimmune Encephalomyelitis: Evidence for a Suppressive Pregancy- Related Serum Factor. J Immunol 2002; 169: 1084-91.
Saraste M, Väisänen S, Alanen A, Airas L. Finnish Multiple Sclerosis And Pregnancy Study Group. Clinical and immunologic evaluation of women with multiple sclerosis during and after pregnancy. Gend Med 2007; 4: 45-55.
Matejuk A, Bakke AC, Hopke C, Dwyer J, Vandenbark AA, Offner H. Estrogen Treatment Induces a Novel Population of Regulatory Cells, Which Suppresses Experimental Autoimmune Encephalomyelitis. J Neuroscience Res 2004; 77: 119-26.
Xiao BG, Liu X, Link H. Antigen-specific T cell functions are suppressed over the estrogen-dendritic cell-indoleamine 2,3- dioxygenase axis. Steroids 2004; 69: 653-9.
Polanczyk M, Zamora A, Subramanian S, Matejuk A, Hess DL, et al. The protective effect of 17beta-estradiol on experimental autoimmune encephalomyelitis is mediated through estrogen receptor-alpha. Am J Pathol 2003; 163: 1599-605.
Vegeto E, Belcredito S, Etteri S, Ghisletti S, Brusadelli A, et al. Estrogen receptor-a mediates the brain antiinflammatory activity of estradiol. PNAS 2003; 100: 9614-19.
Polanczyk MJ, Jones RJ, Subramanian S, Afentoulis M, Rich C, et al. T Lymphocytes Do Not Directly Mediate the Protective Effect of Estrogen on Experimental Autoimmune Encephalomyelitis. Am J Pathol 2004; 165: 2069-77.
Gautam AM, Glynn P. Lewis rat lymphoid dendritic cells can efficiently present homologous myelin basic protein to encephalitogenic lymphocytes. J Neuroimmunol 1989; 22: 113-21.
Zhang QH, Link H, Xiao BG. Efficacy of peripheral tolerance induced by dendritic cells is dependent on route of delivery. Autoimmun 2004; 23: 37-43.
Serafini B, Columba-Cabezas S, DiRosa F, Aloisi F. Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am J Pathol 2000; 157: 1991-2002.
Ito A, Bebo BF Jr, Matejuk A, Zamora A, Silverman M, et al. Estrogen treatment down-regulates TNF-alpha production and reduces the severity of experimental autoimmune encephalomyelitis in cytokine knockout mice. J Immunol 2001; 167: 542-52.
Zhang QH, Hu YZ, Cao J, Zhong YQ, Zhao YF, Mei QB. Estrogen influences the differentiation, maturation and function of dendritic cells in rats with experimental autoimmune encephalomyelitis. Acta Farmacol Sin 2004; 25: 508-13.
Delpy L, Douin-Echinard V, Garidou L, Bruand C, Saoudi A, Guéry JC. Estrogen Enhances Susceptibility to Experimental Autoimmune Myasthenia Gravis by Promoting Type 1-Polarized Immune Responses. J Immunol 2005; 175: 5050-7.
Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of T(H)17 cells. Nature 2008; 453(7198): 1051-7.
Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 2007; 13: 1173-5.
Wang C, Dehghani B, Li Y, Kaler LJ, Proctor T, et al. Membrane estrogen receptor regulates experimental autoimmune encephalomyelitis through up-regulation of programmed death 1. J Immunol 2009; 182: 3294-303.
Bebo BF Jr, Dehghani B, Foster S, Kurniawan A, Lopez FJ, Sherman LS. Treatment with selective estrogen receptor modulators regulates myelin specific T-cells and suppresses experimental autoimmune encephalomyelitis. Glia 2009; 57: 777-90.