2013, Número 1
<< Anterior Siguiente >>
Rev Cuba Endoc 2013; 24 (1)
Hormonas, cerebro y conducta. Notas para la práctica de la Psicología en la Endocrinología
Wong CA, Álvarez GMÁ
Idioma: Español
Referencias bibliográficas: 62
Paginas:
Archivo PDF: 299.56 Kb.
RESUMEN
Las prácticas de los psicólogos en el campo de la Endocrinología y las de los propios endocrinólogos, requieren un mínimo de conocimientos sobre los efectos conductuales no endocrinos de las hormonas. La temporalidad es un concepto clave en Neurobiología, hecho que puede observarse con claridad en el efecto de las hormonas sobre la conducta, al tratarse de acciones moduladas por el período de maduración del sistema nervioso en que se ejercen. El mecanismo neural que facilita la ocurrencia de estas acciones en el tiempo es la plasticidad cerebral. Las hormonas, en su condición de factores epigenéticos, influyen en la conducta mediante los procesos de plasticidad, y provocan dos efectos principales: el organizador y el activador. El primero se refiere a la capacidad de las hormonas de influir en la citoarquitectura y estructura del cerebro de manera permanente durante el desarrollo, desde el período fetal hasta el final de la adolescencia, aunque algunos estudios sugieren que este efecto se mantiene más allá del período de la pubertad. El activador se relaciona con la activación de células diana para facilitar conductas en contextos específicos. Se trata de influencias transitorias, puntuales, que dependen de la concentración de las hormonas en cada instante. Solo conociendo la compleja relación entre el sustrato neural, las condiciones hormonales y el grado de maduración del sistema nervioso en general, y del cerebro en particular, se pueden diseñar estrategias terapéuticas correctas. El desconocimiento de estas interrelaciones lleva al riesgo de trabajar solo con la subjetividad del paciente y desconocer sus potencialidades y limitaciones.
REFERENCIAS (EN ESTE ARTÍCULO)
Álvarez M, Trápaga M. Principios de neurociencias para Psicólogos. Buenos Aires: Paidos; 2008. p. 155-79
Eagleman D, Tse P, Buonomano D, Janssen P. Time and the Brain: How Subjective Time Relates to Neural Time. The Journal of Neuroscience. 2005;25(45):10369-71.
Cohen-Bendahan CC, Van de Beek C, Berembaum SA. Prenatal sex hormone effects on child and adult sex typd behavior methods and findings. Neurosciences and biobehavioral reviews. 2005;29:353-84.
Hebb DO. The Organization of Behavior: A Neuropsychological Theory. New York: Wiley; 1949.
Johnston MV. Plasticity in the developing brain. Implications for rehabilitation. Developmental disabilities. Research Reviews. 2009;15:94-101.
Armstrong VL, Brunet PM, He C, Nishimura M, Poole HL, Spector FJ. What is so critical?: a commentary on the reexamination of critical periods. Dev Psychobiol. 2006;48(4):326-31.
Fox SE, Levitt P, Nelson CA. How the timing of early experiences influence the development of brain architecture. Child Development. 2010;81:28-40.
Matsuzaki F, Sampath K. Wiring the nervous system: from form to function. Development. 2007; doi: 10.1242/dev.004416
Bird A. Perceptions of epigenetics. Nature. 2007;447:396-8.
Goldberg AD, Allis D, Bernstein E. Epigenetics: A Landscape Takes Shape. Cell. 2007;128:635-8.
Sisk C, Zher JL. Pubertal hormones oganize the adolescent brain and behavior. Frontiers in neuroendocrinology. 2005;26:163-4.
Scott JP, Stewart JM, De Ghett JV. Critical periods in the organization of systems. Dev Psychobiol. 2007;36(2):177-92.
Phoenix C, Goy R, Gerall A, Young W. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behaviors in the female guinea pig. Endocrinology. 1959;65:163-96.
Collaer ML, Reimers S, Manning JT, Collaer ML, Reimers S, Manning JT. Visuospatial performance on an internet line judgment task and potential hormonal markers: sex, sexual orientation, and 2D:4D. Arch Sex Behav. 2007;36(2):177-92.
Zitzmann M. Testosterone and the brain.Aging Male. 2006;9(4):195-9.
Hines MS. Ex-related variation in human behavior and the brain. Trends Cogn Sci. 2010;14(10):448-56.
Hines M. Gender development and the human brain. Annu Rev Neurosci. 2011;34:69-88.
Whitehouse AJ, Maybery MT, Hart R, Mattes E, Newnham JP, Sloboda DM, et al. Fetal androgen exposure and pragmatic language ability of girls in middle childhood: implications for the extreme male-brain theory of autism. Psychoneuroendocrinology. 2010;35(8):1259-64.
Berenbaum SA, Beltz AM. Sexual differentiation of human behavior: effects of prenatal and pubertal organizational hormones. Front Neuroendocrinol. 2011;32(2):183-200.
Sutcliffe JS. Female rats are smarter than males: influence of test, oestrogen receptor subtypes and glutamate. Curr Top Behav Neurosc. 2011;8:37-56.
Bao AM, Swaab DF. Sexual differentiation of the human brain: relation to gender identity, sexual orientation and neuropsychiatric disorders. Front Neuroendocrinol. 2011;32(2):214-26.
Hampson E, Kimura K. Sex Differences and hormonal influences on cognitive functions in humans. En: Becker JB, Breedlove SM, Crews D. Behavioral endocrinology. Cambridge: MIT Press; 1993. p. 357-400.
Kimura D. Sex, sexual orientation and sex hormones influence human cognitive function. Current Opinion in Neurobiology. 1996;6:259-63.
Hyde J, Fennema E, Lamon S. Gender differences in mathematics performance: a meta-analysis. Psychological Bulletin. 1990;107:139-55.
Nass R, Baker S. Androgen effects on cognition in congenital adrenal hyperplasia. Psychoneuroendocrinology. 1991;16:189-202.
Jordan-Young RM Hormones, context, and "brain gender": a review of evidence from congenital adrenal hyperplasia. Soc Sci Med. 2012;74:1738-44.
Álvarez M, Barroso C, Arce B. Psychological characterization of testicular femenization syndrome. Reproducción. 1983;7:9-15.
Young S. Adults with severe congenital hypothyroidism: cognitive event related potentials (ERPs) and the significance of an early start of thyroxine treatment. Scand J Psychol. 2007;48:61-7.
Dimitropoulos A, Molinari L, Etter K, Torresani T, Lang-Muritano M, Jenni OG, et al. Children with congenital hypothyroidism: long-term intellectual outcome after early high-dose treatment. Pediatr Res. 2009;65:242-8.
Rovet J. Children with congenital hypothyroidism and their siblings: do they really differ? Pediatrics. 2005;115:52-7.
Delvecchio M, Faienza MF, Acquafredda A, Zecchino C, Peruzzi S, Cavallo L. Longitudinal assessment of levo-thyroxine therapy for congenital hypothyroidism: relationship with aetiology, bone maturation and biochemical features. Horm Res. 2007;68:105-12.
Selva KA, Harper A, Downs A, Blasco PA, LaFranchi SH. Neurodevelopmental outcomes in congenital hypothyroidism: comparison of initial T4 dose and time to reach target T4 and TSH. J Pediatr. 2005;147:775-80.
Ng SM, Anand D, Weindling AM. High versus low dose of initial thyroid hormone replacement for congenital hypothyroidism. Cochrane Database Syst Rev. 2009.
Marti S, Alvarez M, Simoneau-Roy J, Leroux S, Van Vliet G, Robaey P. Effects of early high-dose levothyroxine treatment on auditory brain event-related potentials at school entry in children with congenital hypothyroidism. Horm Res. 2006;66:240-8.
Álvarez M, Carvajal F, Renón A, Perez C, Olivares A, Rodríguez G, Álvarez V. Differential effect of fetal, neonatal and treatment variables on neurodevelopment in infants with congenital hypothyroidism. Hormone Research. 2004;61:17-20.
Olivares A, Perez G, Carvajal F, Perez MC, Galán L, Alvarez M. Differential cognitive pattern in patients with congenital hypothyroidism according to etiology: dyshormonogenesis and dysembryogenesis. Clin Neurophysiol. 2008;119:54.
Álvarez M. Episodes of over treatment during the first six months in children with Congenital Hypothyroidism and their relationships with sustained attention and inhibitory control at school age. Horm Res Paediatr. 2010;74:114-20.
Álvarez M, Navarro D, Gómez A, Alavéz E. Attention disturbance in Graves' Disease. Psychoneuroendocrinology. 1983;8:451-4.
Álvarez M, Guell R, Chiong D, Rovet J. Attentional processing in hyrthyroid children before and after treatment. Journal of Pediatric Endocrinology and Metabolism. 1996;9:1-7.
Álvarez M, Navarro D, Ripoll F. Depresión y status tiroideo en personas mayores de 60 años. Rev Cubana Endocrinol. 1990;1:2.
Álvarez M, Navarro D. Psychological characteristics of patients with Cushing's Syndrome. Vaprosi Endocrinol. 1982;28:26-8.
Sapolsky RM. Stress, aging brain, and the mechanisms of neuron death. Cambridge: MIT Press; 1992. p. 219-38
Hinkelmann K, Moritz S, Botzenhardt J, Riedesel K, Wiedemann K, Kellner M, et al. Cognitive impairment in major depression: association with salivary cortisol. Biol Psychiatry. 2009;66(9):879-85.
Amaro S. Breve historia de la Endocrinología. La Habana: Editorial Ciencias Médicas; 1991. p. 83-5
Carter CS. Hormonal influences on human sexual behavior. Behavioral endocrinology. Cambridge: MIT Press; 1993. p. 131-42.
Olweus D, Mattson A, Schalling D, Low H. Circulating testosterone levels and aggression in adolescents males: a causal analysis relationship. Psychosom Med. 1988;50:261-72.
Zitzmann M. Testosterone and the brain. Aging Male. 2006;(4):195-9.
Heinrich M, Domes G. Neuropeptides and social behavior: effects of oxytocin and vasopressin in humans. En: Progress in Brain Research. Amsterdam: Elsevier; 2008. p. 337-50.
Insel TR. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron. 2010;65(6):768-79.
Savaskan E, Ehrhardt R, Schulz A, Walter M, Schächinger H. Post-learning intranasal oxytocin modulates human memory for facial identity. Psychoneuroendocrinology. 2008;33(3):368-74.
González P, Álvarez M, Cabrera E, Bejerano J, López A. Caracterización del control metabólico en niños y adolescentes con diabetes mellitus tipo 1. Rev Cubana Endocrinol. 2012;23:117-27.
Bruehl H, Wolf OT, Sweat V, Tirsi A, Richardson S, Convit A. Modifiers of cognitive function and brain structure in middle-aged and elderly individuals with type 2 diabetes mellitus. Brain Res. 2009;1280:186-94.
Bruehl H, Rueger M, Dziobek I, Sweat V, Tirsi A, Javier E, et al. Hypothalamic-pituitary-adrenal axis dysregulation and memory impairments in type 2 diabetes. J Clin Endocrinol Metab. 2007;92(7):2439-45.
Kolb B, Whishaw IQ. Neuropsicología Humana. México: Ed. Médica Panamericana; 2006. p. 391-425
Miyake A, Friedman N, Emerson M, Witzki A, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: a latent variable analysis. Cognitive Psychology. 2000;41:49-100.
Burgess PW, Alderman L, Forbes C, Costello A, Coates L, Dawson DR, et al. The case for the development and use of ecollogically valid measures of exewcutive functions in experimental and clinical neuropsychology. Journal of the International Neuropsychological Society. 2006;12:1-16.
Garon N, Bryson SE, Smith IM. Executive function in preschoolers: a review using an integrative framework. Psychol Bull. 2008;134(1):31-60
Toga AW. Thompson PM, Sowell ER. Mapping brain maturation. Trends in neurosciences. 2006;29:148-59.
Santrock JM. Life-Span development. New York: Mac Graw Hill; 2008. p. 292-326
Kandel E. The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep. 2004;(4-5):475-522.
Vigotsky LP. Pensamiento y lenguaje. Buenos Aires: La Pléyade; 1992.
González P, Álvarez M, Guell R, Morales J, García CT. Tratamiento psicológico de niños con anomalías morfológicas externas de los genitales. Rev Cubana Pediatr. 1988;61:662-70.