2013, Número 2
<< Anterior Siguiente >>
Rev Fac Med UNAM 2013; 56 (2)
Factores vasculares implicados en la preeclampsia
Itami-Sordo ME, Jiménez-Nieto R, de Haro R
Idioma: Español
Referencias bibliográficas: 59
Paginas: 18-24
Archivo PDF: 177.43 Kb.
RESUMEN
La preeclampsia es una enfermedad que únicamente se presenta
en la mujer embarazada y que se caracteriza por hipertensión
y proteinuria con o sin edema después de la semana
20 de embarazo. Aunque se han propuesto múltiples teorías
para explicar su patogenia, recientemente éstas han confluido
en una circulación placentaria deficiente que ocasiona
hipoxia en el producto y disfunción endotelial sistémica en
la madre al reducir los factores que promueven un adecuado
funcionamiento endotelial. El receptor semejante a FMS 1
(sFlt-1) y la endoglina (sEng) solubles se han asociado a la
disminución del factor de crecimiento vascular endotelial
(VEGF) y el factor de crecimiento transformante (TGF) en el
plasma materno, respectivamente; lo que contribuye a una
irrigación deficiente del producto y a alteraciones maternas
que conducen a hipertensión y proteinuria. Algunas sustancias
como los anticuerpos contra angiotensina II pueden
provocar la liberación de tales factores antiangiogénicos.
La determinación del sFlt-1 y sEng en el plasma de mujeres
embarazadas podrían llegar a utilizarse para predecir qué
mujeres padecerán preeclampsia.
REFERENCIAS (EN ESTE ARTÍCULO)
Roberts JM, Cooper DW. Pathogenesis and genetics of pre-eclampsia. Lancet. 2001;357:53-6.
Pridjian G, Puschett JB. Preeclampsia. Part 1: clinical and pathophysiologic considerations. Obstet Gynecol Surv. 2002;57:598-618.
Solomon CG, Seely EW. Preeclampsia - searching for the cause. N Engl J Med. 2004;350:641-2.
Shah DM. Preeclampsia: new insights. Curr Opin Nephrol Hypertens. 2007;16:213-20.
Stillman IE, Karumanchi SA. The glomerular injury of preeclampsia. J Am Soc Nephrol. 2007;18:2281-4.
Hladunewich M, Karumanchi SA, Lafayette R. Pathophysiology of the clinical manifestations of preeclampsia. Clin J Am Soc Nephrol. 2007;2:543-9.
Mihu D, Costin N, Mihu CM, Seicean A, Ciortea R. HELLP syndrome - a multisystemic disorder. J Gastrointestin Liver Dis. 2007;16:419-24.
Landi B, Tranquilli AL. HELLP syndrome and placental inflammatory pathology. Minerva Ginecol. 2008;60:389-98.
Demir R, Kayisli UA, Cayli S, Huppertz B. Sequential steps during vasculogenesis and angiogenesis in the very early human placenta. Placenta. 2006;27:535-9.
Demir R, Seval Y, Huppertz B. Vasculogenesis and angiogenesis in the early human placenta. Acta Histochem. 2007;109:257-65.
Barrientos G, Tirado-González I, Klapp BF, Karimi K, Arck PC, Garcia MG, Blois SM. The impact of dendritic cells on angiogenic responses at the fetal-maternal interface. J Reprod Immunol. 2009;83:85-94.
Knöfler M. Critical growth factors and signalling pathways controlling human trophoblast invasion. Int J Dev Biol. 2010;54:269-80.
Fisher SJ. The placental problem: linking abnormal cytotrophoblast differentiation to the maternal symptoms of preeclampsia. Reprod Biol Endocrinol. 2004;2:53.
Verlohren S, Geusens N, Morton J, Verhaegen I, Hering L, Herse F, Dudenhausen JW, Muller DN, Luft FC, Cartwright JE, Davidge ST, Pijnenborg R, Dechend R. Inhibition of trophoblast-induced spiral artery remodeling reduces placental perfusion in rat pregnancy. Hypertension. 2010;56:304-10.
Myatt L. Role of placenta in preeclampsia. Endocrine. 2002;19:103-11.
Bdolah Y, Sukhatme VP, Karumanchi SA. Angiogenic imbalance in the pathophysiology of preeclampsia: newer insights. Semin Nephrol. 2004;24:548-56.
Khankin EV, Royle C, Karumanchi SA. Placental vasculature in health and disease. Semin Thromb Hemost. 2010;36:309-20.
Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev. 2004;56:387-437.
Walsh SW. Eicosanoids in preeclampsia. Prostaglandins Leukot Essent Fatty Acids. 2004;70:223-32.
Bowen RS, Zhang Y, Gu Y, Lewis DF, Wang Y. Increased phospholipase A2 and thromboxane but not prostacyclin production by placental trophoblast cells from normal and preeclamptic pregnancies cultured under hypoxia condition. Placenta. 2005;26:402-9.
Sellers MM, Stallone JN. Sympathy for the devil: the role of thromboxane in the regulation of vascular tone and blood pressure. Am J Physiol Heart Circ Physiol. 2008; 294:H1978-86.
Coomarasamy A, Honest H, Papaioannou S, Gee H, Khan KS. Aspirin for prevention of preeclampsia in women with historical risk factors: a systematic review. Obstet Gynecol. 2003;101:1319-32.
Ruano R, Fontes RS, Zugaib M. Prevention of preeclampsia with low-dose aspirin -- a systematic review and metaanalysis of the main randomized controlled trials. Clinics (Sao Paulo). 2005;60:407-14.
Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109-42.
Knowles RG, Moncada S. Nitric oxide as a signal in blood vessels. Trends Biochem Sci. 1992;17:399-402.
Seligman SP, Buyon JP, Clancy RM, Young BK, Abramson SB. The role of nitric oxide in the pathogenesis of preeclampsia. Am J Obstet Gynecol. 1994;171:944-8.
Bilodeau JF, Hubel CA. Current concepts in the use of antioxidants for the treatment of preeclampsia. J Obstet Gynaecol Can. 2003;25:742-50.
Matsubara K, Matsubara Y, Hyodo S, Katayama T, Ito M. Role of nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. J Obstet Gynaecol Res. 2010;36:239-47.
Mangoni AA. The emerging role of symmetric dimethylarginine in vascular disease. Adv Clin Chem. 2009;48:73-94.
Böger RH, Diemert A, Schwedhelm E, Lüneburg N, Maas R, Hecher K. The role of nitric oxide synthase inhibition by asymmetric dimethylarginine in the pathophysiology of preeclampsia. Gynecol Obstet Invest. 2010; 69:1-13.
Sandrim VC, Palei AC, Metzger IF, Cavalli RC, Duarte G, Tanus-Santos JE. Interethnic differences in ADMA concen- trations and negative association with nitric oxide formation in preeclampsia. Clin Chim Acta. 2010;411:1457-60.
Cuzzocrea S, Salvemini D. Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney Int. 2007;71:290-7.
Miyamoto A, Hashiguchi Y, Obi T, Ishiguro S, Nishio A. Ibuprofen or ozagrel increases NO release and l-nitro arginine induces TXA(2) release from cultured porcine basilar arterial endothelial cells. Vascul Pharmacol. 2007;46:85-90.
Prasad VS, Palaniswamy C, Frishman WH. Endothelin as a clinical target in the treatment of systemic hypertension. Cardiol Rev. 2009;17:181-91.
Dechanet C, Fort A, Barbero-Camps E, Dechaud H, Richard S, Virsolvy A. Endothelin-dependent vasoconstriction in human uterine artery: application to preeclampsia. PLoS One. 2011 6: e16540.
Sheppard SJ, Khalil RA. Risk factors and mediators of the vascular dysfunction associated with hypertension in pregnancy. Cardiovasc Hematol Disord Drug Targets. 2010;10:33-52.
Shimokawa H. Hydrogen peroxide as an endothelium-derived hyperpolarizing factor. Pflugers Arch. 2010;459:915-22.
Campese VM, Park J. The kidney and hypertension: over 70 years of research. J Nephrol. 2006;19:691-8.
Irani RA, Zhang Y, Zhou CC, Blackwell SC, Hicks MJ, Ramin SM, Kellems RE, Xia Y. Autoantibody-mediated angiotensin receptor activation contributes to preeclampsia through tumor necrosis factor-alpha signaling. Hypertension. 2010;55:1246-53.
Henao DE, Saleem MA, Cadavid AP. Glomerular disturbances in preeclampsia: disruption between glomerular endothelium and podocyte symbiosis. Hypertens Pregnancy. 2010;29:10-20.
Vikse BE, Irgens LM, Leivestad T, Skjaerven R, Iversen BM1. Preeclampsia and the risk of end-stage renal disease. N Engl J Med. 2008;359:800-9.
Sabour S, Franx A, Rutten A, Grobbee DE, Prokop M, Bartelink ML, van der Schouw YT, Bots ML. High blood pressure in pregnancy and coronary calcification. Hypertension. 2007;49:813-7.
Levine RJ, Vatten LJ, Horowitz GL, Qian C, Romundstad PR, Yu KF, Hollenberg AN, Hellevik AI, Asvold BO, Karumanchi SA. Pre-eclampsia, soluble fms-like tyrosine kinase 1, and the risk of reduced thyroid function: nested casecontrol and population based study. BMJ. 2009;339:b4336.
D’Andrea LD, Del Gatto A, De Rosa L, Romanelli A, Pedone C. Peptides targeting angiogenesis related growth factor receptors. Curr Pharm Des. 2009;15:2414-29.
Przybylski M. A review of the current research on the role of bFGF and VEGF in angiogenesis. J Wound Care. 2009;18:516-9.
Saharinen P, Bry M, Alitalo K. How do angiopoietins Tie in with vascular endothelial growth factors? Curr Opin Hematol. 2010;17:198-205.
Duff SE, Li C, Garland JM, Kumar S. CD105 is important for angiogenesis: evidence and potential applications. FASEB J. 2003;17:984-92.
Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376:62-6.
Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, Boak BB, Wendel DP. Defective angiogenesis in mice lacking endoglin. Science. 1999;(28)284: 1534-7.
Clark DE, Smith SK, He Y, Day KA, Licence DR, Corps AN, Lammoglia R, Charnock-Jones DS. A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. Biol Reprod. 1998;59:1540-8.
Luttun A, Carmeliet P. Soluble VEGF receptor Flt1: the elusive preeclampsia factor discovered? J Clin Invest. 2003; 111:600-2.
Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, D’Amore PA, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Letarte M, Karumanchi SA. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12:642-9.
Baumwell S, Karumanchi SA. Pre-eclampsia: clinical manifestations and molecular mechanisms. Nephron Clin Pract. 2007;106:c72-81.
Foidart JM, Schaaps JP, Chantraine F, Munaut C, Lorquet S. Dysregulation of anti-angiogenic agents (sFlt-1, PLGF, and sEndoglin) in preeclampsia--a step forward but not the definitive answer. J Reprod Immunol. 2009;82:106-11.
Sugimoto H, Hamano Y, Charytan D, Cosgrove D, Kieran M, Sudhakar A, Kalluri R. Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem 2003;278:12605-8.
Zhou CC, Irani RA, Zhang Y, Blackwell SC, Mi T, Wen J, Shelat H, Geng YJ, Ramin SM, Kellems RE, Xia Y. Angiotensin receptor agonistic autoantibody-mediated tumor necrosis factor-alpha induction contributes to increased soluble endoglin production in preeclampsia. Circulation. 2010;121:436-44.
Chu QS. Aflibercept (AVE0005): an alternative strategy for inhibiting tumour angiogenesis by vascular endothelial growth factors. Expert Opin Biol Ther. 2009;9:263-71.
Shokry M, Bedaiwy MA, Fathalla MM, Alsemary A, Elwakil S, Murphy A. Maternal serum placental growth factor and soluble fms-like tyrosine kinase 1 as early predictors of preeclampsia. Acta Obstet Gynecol Scand. 2010;89:143-6.
Maynard SE, Moore Simas TA, Bur L, Crawford SL, Solitro MJ, Meyer BA. Soluble endoglin for the prediction of preeclampsia in a high risk cohort. Hypertens Pregnancy 2010; 29: 330-41.