2013, Número 1
<< Anterior Siguiente >>
Rev Fac Med UNAM 2013; 56 (1)
Los ácidos grasos y la lipotoxicidad: implicaciones metabólicas
Martínez SJ, Torres DPV, Juárez OMA
Idioma: Español
Referencias bibliográficas: 40
Paginas: 5-18
Archivo PDF: 461.26 Kb.
RESUMEN
La obesidad constituye un gran problema de salud pública,
y México se encuentra dentro de los primeros lugares
en términos de prevalencia e incidencia. En adultos es el
principal factor de riesgo para el desarrollo de resistencia a
la insulina, síndrome metabólico, diabetes mellitus tipo 2 y
sus complicaciones a corto y largo plazo. El exceso de tejido
adiposo central tiene como consecuencia un aumento en la
lipólisis basal con la liberación subsecuente de ácidos grasos
al torrente sanguíneo; al llegar a sus células blanco, éstos son
captados para ser metabolizados. El aumento de los ácidos
grasos intracelulares tiene como consecuencia la activación
de vías metabólicas no oxidativas, como lo es la formación
de ceramidas, la degradación lisosomal y la generación de
estrés de retículo endoplasmático. Este último tiene como
consecuencia la activación de vías de señalización relacionadas
con el inicio de la muerte celular programada. Dicho
aumento en la apoptosis es característica en enfermedades
relacionadas con la deposición ectópica de ácidos grasos en
tejidos, como la esteatohepatitis no alcohólica, disfunción
Los ácidos grasos y la
lipotoxicidad: implicaciones
metabólicas
Jesús Martínez Sámanoa, Patricia Victoria Torres
Durána, Marco Antonio Juárez Oropezaa
β-pancreática y cardiotoxicidad. Comprender estos mecanismos
es necesario para iniciar medidas destinadas al control
de peso y sus complicaciones.
REFERENCIAS (EN ESTE ARTÍCULO)
Organización Mundial de la Salud. Obesidad y sobrepeso. 2011 [Actualización: Marzo, 2011; Citado: 2011 Octubre, 2011]; Disponible en: http://www.who.int/mediacentre/factsheets/fs311/es/index.html.
Norma Oficial Mexicana NOM-174-SSA1-1998 para el manejo integral de la obesidad, (1998).
Lehninger AL, Nelson DL, Cox MM. Lehninger Principles of biochemistry. 5th ed. New York: W.H. Freeman; 2008.
Díaz-Zagoya JC, Juárez-Oropeza MA. Bioquímica, un enfoque básico aplicado a las ciencias de la vida. 1a ed. México, Distrito Federal: Mc Graw Hill; 2007. 722 p.
Berg JM, Tymoczko JL, Stryer L. Biochemistry. 6th ed. New York: W.H. Freeman; 2007.
Large V, Peroni O, Letexier D, Ray H, Beylot M. Metabolism of lipids in human white adipocyte. Diabetes Metab. 2004;30(4):294-309.
Ahmadian M, Wang Y, Sul HS. Lipolysis in adipocytes. Int J Biochem Cell Biol. 2010;42(5):555-9.
McArthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F. Cellular uptake and intracellular trafficking of long chain fatty acids. J Lipid Res. 1999;40(8):1371-83.
Large V, Arner P. Regulation of lipolysis in humans. Pathophysiological modulation in obesity, diabetes, and hyperlipidaemia. Diabetes Metab. 1998;24(5):409-18.
Arner P. Control of lipolysis and its relevance to development of obesity in man. Diabetes Metab Rev. 1988;4(5):507-15.25
Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. Regulation of lipolysis in adipocytes. Annu Rev Nutr. 2007;27:79-101.
Waki H, Tontonoz P. Endocrine functions of adipose tissue. Annu Rev Pathol. 2007;2:31-56.
Cusi K. Role of insulin resistance and lipotoxicity in nonalcoholic steatohepatitis. Clin Liver Dis. 2009;13(4):545-63.
Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1(7285):785-9.
Weinberg JM. Lipotoxicity. Kidney Int. 2006;70(9):1560-6.
Unger RH. Lipotoxic diseases. Annu Rev Med. 2002;53:319-36.
Feldstein AE, Werneburg NW, Li Z, Bronk SF, Gores GJ. Bax inhibition protects against free fatty acid-induced lysosomal permeabilization. Am J Physiol Gastrointest Liver Physiol. 2006;290(6):G1339-46.
Puri P, Mirshahi F, Cheung O, Natarajan R, Maher JW, Kellum JM, et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology. 2008;134(2):568-76.
Madan K, Bhardwaj P, Thareja S, Gupta SD, Saraya A. Oxidant stress and antioxidant status among patients with nonalcoholic fatty liver disease (NAFLD). J Clin Gastroenterol. 2006;40(10):930-5.
Seki S, Kitada T, Sakaguchi H. Clinicopathological significance of oxidative cellular damage in non-alcoholic fatty liver diseases. Hepatol Res. 2005;33(2):132-4.26
Yesilova Z, Ozata M, Oktenli C, Bagci S, Ozcan A, Sanisoglu SY, et al. Increased acylation stimulating protein concentrations in nonalcoholic fatty liver disease are associated with insulin resistance. Am J Gastroenterol. 2005;100(4):842-9.
Yesilova Z, Yaman H, Oktenli C, Ozcan A, Uygun A, Cakir E, et al. Systemic markers of lipid peroxidation and antioxidants in patients with nonalcoholic Fatty liver disease. Am J Gastroenterol. 2005;100(4):850-5.
Lee JY, Zhao L, Youn HS, Weatherill AR, Tapping R, Feng L, et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Tolllike receptor 6 or 1. J Biol Chem. 2004;279(17):16971-9.
Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015-25.
Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol. 2005;25(10):2062-8.
Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516.
Malhi H, Gores GJ. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis. 2008;28(4):360-9.
Wende AR, Abel ED. Lipotoxicity in the heart. Biochim Biophys Acta. 2010;1801(3):311-9.
Trauner M, Arrese M, Wagner M. Fatty liver and lipotoxicity. Biochim Biophys Acta. 2010;1801(3):299-310.
Lann D, LeRoith D. Insulin resistance as the underlying cause for the metabolic syndrome. Med Clin North Am. 2007;91(6):1063-7727
Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. BMC Med. 2011;9:48.
Jager J, Gremeaux T, Cormont M, Le Marchand-Brustel Y, Tanti JF. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology. 2007;148(1):241-51.
Smith DA. Treatment of the dyslipidemia of insulin resistance. Med Clin North Am. 2007;91(6):1185-210.
Stepniakowski KT, Goodfriend TL, Egan BM. Fatty acids enhance vascular alpha-adrenergic sensitivity. Hypertension. 1995;25(4 Pt 2):774-8.
Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006;113(15):1888-904.
Moller DE, Kaufman KD. Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med. 2005;56:45-62.
Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409-35.
Bragt MC, Popeijus HE. Peroxisome proliferator-activated receptors and the metabolic syndrome. Physiol Behav. 2008;94(2):187-97.
Higa M, Zhou YT, Ravazzola M, Baetens D, Orci L, Unger RH. Troglitazone prevents mitochondrial alterations, beta cell destruction, and diabetes in obese prediabetic rats. Proc Natl Acad Sci U S A. 1999;96(20):11513-8.
Shimabukuro M, Zhou YT, Levi M, Unger RH. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A. 1998;95(5):2498-502.