2012, Número 4
<< Anterior Siguiente >>
Evid Med Invest Salud 2012; 5 (4)
Toxina VCC de Vibrio cholerae: de la vacuolización a la muerte celular
Castañón-Sánchez CA
Idioma: Español
Referencias bibliográficas: 43
Paginas: 114-119
Archivo PDF: 238.45 Kb.
RESUMEN
El cólera epidémico causado por
Vibrio cholerae toxigénico perteneciente a los serogrupos O1 y O139 es un grave problema de salud pública en muchos países en desarrollo. La enfermedad se caracteriza por una diarrea aguda deshidratante causada principalmente por la toxina colérica, enterotoxina producida por estos microorganismos durante la patogénesis de la enfermedad. En su forma severa, los pacientes llegan a presentar choque hipovolémico, acidosis y muerte, si el tratamiento adecuado no es iniciado a tiempo. Dos características epidemiológicas distintivas del cólera son: la tendencia a aparecer en brotes explosivos, siempre y cuando inicien en focos distintos simultáneamente, y su propensión para causar verdaderas pandemias que afectan progresivamente muchos países en múltiples continentes en el transcurso de varios años. El género
Vibrio incluye muchas especies diferentes, de las cuales pocas son patogénicas. El ejemplo clásico de especies patógenas de este género es
V. cholerae. Además de producir toxina colérica, algunas cepas son capaces de secretar una toxina formadora de poros que induce la formación de vacuolas. Esta revisión tiene como objetivo abordar algunos aspectos moleculares del proceso de daño celular inducido por la citolisina vacuolizante VCC de
V. cholerae.
REFERENCIAS (EN ESTE ARTÍCULO)
Faruque SM, Nair GB. Molecular ecology of toxigenic Vibrio cholerae. Microbiol Immunol 2002; 2: 59-66.
Kaper JB, Morris JG, Levine MV. Cholerae. Clin Microbiol Rev 1995; 8: 48-86.
Chatterjee SN, Chaudhuri K. Lipopolysaccharides of Vibrio cholerae I. Physical and chemical characterization. Biochim Biophys Acta 2003; 1639: 65-79.
Reidl J, Klose KE. Vibrio cholera and cholera: out of the water and into the host. FEMS Microbiol Revs 2002; 26: 125-139.
Weil AA, Ivers LC, Harris JB. Cholera: lessons from Haiti and beyond. Curr Infect Dis Rep 2012; 14: 1-8.
Dick MH, Guillerm M, Moussy F, Chaignat CL. Review of two decades of cholera diagnostics –how far have we really come? PLOS Negl Trop Dis 2012; 6: 1-8.
Lizárraga-Partida ML, Quilici ML. Molecular analyses of Vibrio cholerae O1 clinical strains, including new nontoxigenic variants isolated in Mexico during the cholera epidemic years between 1991 and 2000. J Clin Microbiol 2009; 47: 1364-1371.
Alam M, Nusrin S, Islam A, Bhuiyan A, Rahim N, Delgado G, Morales R, Mendez JL, Navarro A, Gil AI, Watanabe H, Morita M, Nair GB, Cravioto A. Cholera between 1991 and 1997 in Mexico was associated with infection by Classical, El Tor, and El Tor variants of Vibrio cholerae. J Clin Microbiol 2010; 48: 3666-3674.
Alam M, Islam MT, Rashed SM, Johura F, Bhuiyan NA, Delgado G, Morales R, Mendez JL, Navarro A, Watanabe H, Hasan NA, Colwell RR, Cravioto A. Vibrio cholera Classical biotype strains reveal distinct signatures in Mexico. J Clin Microbiol 2012; 50: 212-216.
Taylor RK, Miller VL, Furlong DB, Mekalanos JJ. Use of phoA gene fusions to identify a pilus colonization factor co-ordinately regulated with cholera toxin. Proc Natl Acad Sci USA 1987; 84: 2833-2837.
Lencer WI. Microbes and microbial toxins: paradigms for microbial-mucosal interactions. V. cholerae: invasion of the intestinal epithelial barrier by a stably folded protein toxin. Am J Physiol Gastrointest Liver Physiol 2001; 280: G781-G786.
Trucksis M, Galen JE, Michalski J, Fasano A, Kaper JB. Accessory cholera enterotoxin (Ace), the third toxin of a V. cholerae virulence cassette. Proc Natl Acad Sci USA 1993; 90: 5267-5271.
Fasano A, Baudry B, Pumplin BW, Wasserman SS, Tall BD, Ketley JM, Kaper JB. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci USA 1991; 88 (12): 5242-5246.
Pearson GD, Woods A, Chiang SL, Mekalanos JJ. CTX genetic element encodes a site specific recombination system and an intestinal colonization. Proc Natl Acad Sci USA 1993; 90: 3750-3754.
Honda T, Finkelstein RA. Purification and characterization of a hemolysin produced by Vibrio cholerae biotype El Tor: another toxic substance produced by cholera vibrios. Infect Immun 1979; 26: 1020-1027.
Ichinose Y, Yamamoto K, Nakasone N, Tanabe MJ, Takeda T, Miwatani T, Iwanaga M. Enterotoxicity of el Tor-like hemolysin of non-O1 Vibrio cholerae. Infect Immun1987; 55: 1090-1093.
Goldberg SL Murphy JR. Cloning and characterization of the hemolysin determinants from Vibrio cholerae RV79(HlyA+), RV79(HlyA-), and 569B. J Bacteriol 1985; 162: 35-41.
Ogierman MA, Fallarino A, Riess T, Williams SG, Attridge SR, Manning PA. Characterization of the Vibrio cholerae El Tor lipase operon lipAB and a protease gene downstream of the hly region. J Bacteriol 1997; 179: 7072-7080.
Manning PA, Brown MH, Heuzenroeder MW. Cloning of the structural gene (hly) for the haemolysin of Vibrio cholerae Tor strain 017. Gene 1984; 3: 225-231.
Yamamoto K, Ichinose Y, Shinagawa H, Makino K, Nakata A, Iwanaga M, Honda T, Miwatani T. Two step processing for activation of the cytolysin/hemolysin of Vibrio cholerae O1 biotype El Tor: nucleotide sequence of the structural gene (hlyA) and characterization of the processed products. Infect Immun 1990; 58: 4106-4116.
Stoebner JA, Payne SM. Iron-regulated hemolysin production and utilization of heme and hemoglobin by Vibrio cholerae. Infect Immun 1988; 56: 2891-2895.
Nagamune K, Yamamoto K, Naka A, Matsuyama J, Miwatani T, Honda T. In vitro proteolytic processing and activation of the recombinant precursor of El Tor cytolysin/hemolysin (pro-HlyA) of Vibrio cholerae by soluble hemagglutinin/protease of V. cholerae, trypsin, and others proteases. Infect Immun 1996; 64(11): 4655-4658.
Valeva A, Walev I, Weis S, Boukhallouk F, Wassenaar TM, Endres K, Fahrenholz F, Bhakdi S, Zitzer A. A cellular metalloproteinase activates Vibrio cholerae pro-cytolysin. J Biol Chem 2004; 279: 25143-25148.
Saha N, Banerjee KK. Carbohydrate-mediated regulation of interaction of Vibrio cholerae hemolysin with erythrocyte and phospholipid vesicle. J Biol Chem 1997; 272: 162-167.
Zitzer A, Bittman R, Verbicky CA, Erukulla RK, Bhakdi S, Weis S, Valeva A, Palmer M. Coupling of cholesterol and cono-shaped lipids in bilayers augments membrane permeabilization by the cholesterol-specific toxin streptolysin O and Vibrio cholerae cytolysin. J Biol Chem 2001; 276: 14628-14633.
Chattopadhyay K, Banerjee KK. Unfolding of Vibrio cholerae hemolysin induces oligomerization of the toxin monomer. J Biol Chem 2003; 278: 38470-38475.
Harris JR, Bhakdi S, Meissner U, Scheffler D, Bittman R, Li G, Zitzer A, Palmer M. Interaction of the Vibrio cholerae cytolysin (VCC) with cholesterol, some cholesterol esters, and cholesterol derivatives: a TEM study. J Struct Biol 2002; 139: 122-135.
Zhang D, Takahashi J, Seno T, Tani Y, Honda T. Analysis of receptor for Vibrio cholerae El Tor hemolysin with a monoclonal antibody that recognizes glycophorin B of human erythrocyte membrane. Infect Immun 1999; 67: 5332-5337.
Krasilnikov O, Yudasheva LN. Transmembrane colesterol migration in planar lipid membranes measured with Vibrio cholerae cytolysin as molecular tool. Biochimie 2009; 91: 620-623.
Mazumdar B, Ganguly S, Ghosh AN, Banerjee KK. The role of C-terminus carbohydrate-binding domanin of Vibrio cholera haemolysin/cytolysin in the conversion of the pre-pore β-barrel oligomer to a functional diffusion channel. Indian J Med Res 2011; 133: 131-137.
De S, Olson R. Crystal structure of the Vibrio cholera cytolysin heptamer reveals common features among disparate pore-forming toxins. Proc Natl Acad Sci 2011; 108: 7385-7390.
Kloft N, Busch T, Neukirch C, Weis S, Boukhallouk F, Bobkiewicz W, Cibis I, Bhakdi S, Husmann M. Pore-forming toxins activate MAPK p38 by causing loss of cellular potassium. Biochem Biophys Res Comm 2009; 385: 503-506.
Figueroa-Arredondo P, Heuser JE, Akopyants NS, Morisaki JH, Giono S, Enriquez F, Berg DE. Cell vacuolation caused by Vibrio cholerae hemolysin. Infect Immun 2001; 69: 1613-1624.
Vidal EJ, Enríquez-Rincón F, Giono-Cerezo S, Ribas-Aparicio RM, Figueroa-Arredondo P. Culture supernants from V. cholerae O1 ElTor strains isolated from different geographic areas induce cell vacuolation and cytotoxicity. Salud Publica Mex 2009; 51: 39-47.
Mitra R, Figueroa P, Mukhopadhyay AK, Shimada T, Takeda Y, Berg DE, Nair GB. Cell vacuolation, a manifestation of the El Tor hemolysin of Vibrio cholerae. Infect Immun 2000; 68: 1928-1933.
Coelho A, Andrade JR, Vicente ACP, DiRita VJ. Cytotoxic cell vacuolation activity from Vibrio cholerae hemolysin. Infect Immun 2000; 68: 1700-1705.
Cover TL, Krishna US, Israel DA, Peek RM. Inducction of gastric epithelial cells apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res 2003; 63: 951-957.
Moschioni M, Tombola F, de Bernard M, Coelho A, Zitzer A, Zoratti M, Montecucco C. The Vibrio cholerae haemolysin anion channel is required for cell vacuolation and death. Cel Microbiol 2002; 4: 397-409.
Krasilnikov OV, Muratkhodjaev JN, Zitzer AO. The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid bilayers. Biochim Biophys Acta 1992; 1111: 7-16.
Menzl K, Maier E, Chakraborty T, Benz R. HlyA hemolysin of Vibrio cholerae O1 biotype El Tor. Identification of the hemolytic complex and evidence for the formation of anion.selective ion-permeable channels. Eur J Biochem 1996; 240: 646-654.
Abrami L, Fivaz M, Glauser PE, Parton RG, van der Goot FG. A pore-forming toxin interacts a GPI-anchored protein and causes vacuolation of the endoplasmic reticulum. J Cell Biol 1998; 140: 525-540.
Cover TL, Blaser MJ. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J Biol Chem 1992; 267: 10570-10575.
Huntley JS, Hall AC, Sathyamoorthy V, Hall RH. Cation flux studies of the lesion induced in human erythrocytes membranes by the thermostable direct hemolysin of Vibrio parahemolyticus. Infect Immun 1993; 61: 10; 4326-4332.