2012, Número 3
<< Anterior Siguiente >>
Evid Med Invest Salud 2012; 5 (3)
Patogenia molecular de Staphylococcus aureus
Castañón-Sánchez CA
Idioma: Español
Referencias bibliográficas: 40
Paginas: 79-84
Archivo PDF: 227.02 Kb.
RESUMEN
Staphylococcus aureus cuenta con un repertorio extraordinario de factores de virulencia que le permite sobrevivir en condiciones extremas en el hospedero humano. El aumento en la resistencia a antimicrobianos de este microorganismo virulento, aunado a su creciente prevalencia como un patógeno nosocomial, es motivo de gran preocupación. En esta revisión se presenta un panorama de los mecanismos bioquímicos y genéticos de patogenicidad de
S. aureus.
REFERENCIAS (EN ESTE ARTÍCULO)
Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, Beach M. Survey of infeccions due to Staphylococcus species: frequency of occurrence and and microbial susceptibility of isolates colleted in the Inites Stated, Canada, Latin America, Europe, the Western pacifi c region for the SENTRY and microbial surveillance program 1997-1999. Clin Infect Dis 2001; 32: S114-S132.
Schito GC. The importance of the development of antibiotic resistance in Staphylococcus aureus. Clin Microbiol Infect 2006; 12: 3-8.
Plata K, Rosato AE, Grzegorz W. Staphylococcus aureus as an infectious agent: overview of biochemistry and molecular genetics if its pathogenicity. Acta Biochim Pol 2009; 56: 597-612.
Lindsay JA, Holden MT. Staphylococcus aureus: superbug super genome? Trends Microbiol 2004; 12: 378-385.
Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 2005; 5: 751-762.
Archer GL. Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis1998; 26: 1179-1181.
Dancer SJ. The eff ect of antibiotics on methilcillin-resistant Staphylococcus aureus. J Antimicrob Chem 2008; 61: 246-253.
Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 2008; 46: S350-S359.
Patti JM, Bremel T, Krajewska-Pietrasik D, Abdelnour A, Tarkowski A, Ryden C, Hook M. The Staphylococcus aureus collagen adhesion is a virulence determinant in experimental septic c arthritis. Infect Immun 1994; 62: 152-162.
Foster TJ, Hook M. Surface protein adhesions if Staphylococcus aureus. Trends Microbiol 1998; 6: 484-488.
Hartleib J, Kohler N, Dickinson RB, Chhatwal GS, Sixma JJ, Hartford OM. Protein A is the von Willebrand factor binding protein on Staphylococcus aureus. Blood 2000; 96: 2149-2156.
Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms. Virulence 2011; 5: 445-459.
O’Gara JP. Ica and beyond: Biofi lm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 2007; 270: 179-188.
Jones SM, Morgan M, Humphrey TJ, Lappin SH. Eff ect of vancomycin and rifampin on methicillin resistant Staphylococcus aureus biofi lms. Lancet 2001; 357: 40-41.
Foster TJ. Immune evasion by Staphylococci. Nat Rev Microbiol 2005; 3: 948-958.
Kaneko J, Kamio Y. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures pore-forming mechanism organization of the genes. Biosci Biotechnol Biochem 2004; 68: 981-1003.
Aman MJ, Karauzum H, Bowden MG, Nguyen TL. Structural model of the pre-pore ring-like structure of panton-valentine leukocidin: providing dimensionality to biophysical and mutational data. J Biomol Struc Dynam 2010; 28: 1-12.
Menestrina G, Serra MD, Prevost G. Mode of action of beta-barrel pore forming toxins of the staphylococcal alpha-hemolysin family. Toxicon 2001; 39: 1661-1672.
Kubica M, Guzik K, Koziel J, Zarebski M, Richter W. A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PloS ONE 2008; 1: e1409.
Prince LR, Graham KJ, Connolly J, Anwar S, Ridley R. Staphylococcus aureus induced eosinophil cell death mediated by a hemolysin. PloS ONE 2012; 2: e31506.
Baker MD, Acharya KR. Superantigens: structure-function relationships. Int J Med Microbiol 2004; 293: 529-537.
Kernodle DS, McGraw PA, Barg NL. Growth of Staphylococcus aureus with nafcillin in vitro induces a-toxin production and increases the lethal activity of sterile broth fi ltrates in a murine model. J Infect Dis 1995; 172: 410-419.
Ohlsen K, Ziebuhr W, Koller KP. Eff ects of subinhibitory concentrations of antibiotics on α-toxin (hla) gene expression of methicillinsensitive and methicillin-resistants Staphylococcus aureus. Antimicrob Agents Chemother 1998; 42: 2817-2823.
Essmann F, Bantel H, Totzke G, Engels H, Sinha B, Schulze-Osthoff K, Jänicke RU. Staphylococcus aureus α-toxin-induced cell death: predominant necrosis despite apoptotic caspase activation. Cel Death Diff er 2003; 10: 1260-1272.
Boyle-Vavra S, Daum RS. Community-acquired methicillin-resistant Staphylococcus aureus. The role of Panton-Valentine leukocidin. Lab Invest 2007; 87: 3-9.
Dumitrescu O, Boisset S, Badiou C. Eff ect of antibiotics on Staphylococcus aureus production of Panton-Valentine leukocidin. Antimicrob Agents Chemother 2007; 51: 1515-1519.
Taylor CM, Riordan FA, Graham C. New football boots and toxic shock syndrome. BMJ 2006; 332: 1376-1378.
Kain KC, Schulzer M, Chow AW. Clinical spectrum of nonmestrual toxic shock syndrome (TSS) comparison with menstrual TSS by multivariate discriminant analyses. Clin Infect Dis 1993; 16: 100-106.
Andrews MM, Parent EM, Barry M. Recurrent nonmentrual toxic shock syndrome: clinical manifestation, diagnosis, and treatment. Clin Infect Dis 2001; 32: 1471-1579.
Koszczol C, Bernardo K, Kronke M. Subinhibitory quinupristin/dalfopristin attenuates virulence of Staphylococcus aureus. J Antimicrob Chomother 2006; 58: 564-574.
Bernardo K, Pakulat N, Fleer S. Subinhibitory concentrations of linezolid reduce Staphylococcus aureus virulence factor expression. Antimicrob Agents Chemother 2004; 48: 546-555.
Bsognano C, Vaudaux PE, Lew DP. Increased expression of fi bronectin-binding proteins by fl uoroquinolone-resistant Staphylococcus aureus exposed to subinhibitory levels of ciprofl oxacin. Antimicrob Agents Chemother 1997; 41: 906-913.
Otto M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol 2010; 64: 143-162.
Bhakdi S, Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev 1991; 4: 733-751.
Valeva A, Walev I, PinkernellM, Walker B, Bayley H, Palmer M, Bhakdi S. Transmembrane beta-barrel of staphylococcal alphatoxin forms in sensitive but not in resistant cells. Proc Natl Acad Sci 1997; 94: 11607-11611.
O’Riodan K, Lee JC. Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev 2004; 17: 218-234.
Rigby KM, DeLeo FR. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol 2012; 34: 237-259.
Almeida RA, Matthews KR, Cifrian E. Staphylococcus aureus invasion of bovine mammary epithelial cells. J Dairy Sci 1996; 79: 1021-1026.
Seral C, Barcia-Macay M, Migeot-Leclercq MP. Comparative activity of quinolones (ciprofl oxacin, levofl oxacin, moxifl oxacin and garenoxacin) against extracellular and intracellular infection by Listeria monocytogenes and Staphylococcus aureus in J774 macrophages. J Antimicrob Chemother 2005; 55: 511-517.
Moskowitz SM, Wiener-Kronish PW. Mechanism of bacterial virulence in pulmonary infections. Curr Opin Crit Care 2010; 16: 8-12.