2009, Número 4
<< Anterior Siguiente >>
Rev Educ Bioquimica 2009; 28 (4)
Efectos del ejercicio sobre los mecanismos celulares para la captación de glucosa en el músculo esquelético
Ramos-Jiménez A, Hernández-Torres RP, Wall-Medrano A, Torres-Durán PV, Juárez-Oropeza MA
Idioma: Español
Referencias bibliográficas: 36
Paginas: 115-124
Archivo PDF: 347.76 Kb.
RESUMEN
El transportador de glucosa GLUT-4 es la principal
isoforma que se expresa en el músculo esquelético y es
translocado desde su localización intracelular a la
membrana plasmática y los túbulos T. La translocación
del GLUT-4, regulada por la insulina y el ejercicio, es el
principal mecanismo por el que aumenta el transporte de
glucosa al músculo esquelético. Se almacena
intracelularmente en pequeños orgánulos vesiculares y
por activación de diversos mecanismos intracelulares (la
mayoría desconocidos) estas vesículas son translocadas
hacia la membrana plasmática, para posteriormente por
medio de exocitosis integrar los transportadores (GLUT-
4) en la membrana plasmática, permitiendo con ello la
captación de glucosa. En este trabajo se presentarán
diversos mecanismos que permiten que los GLUT-4
incrementen su concentración intracelular, se transloquen
e integren en la membrana sarcoplásmica y permitan la
captación de glucosa. Asimismo, se mencionarán los
mecanismos que son activados por el ejercicio físico en
estos procesos.
REFERENCIAS (EN ESTE ARTÍCULO)
Aslesen R, Jensen J (1998) Effects of epinephrine on glucose metabolism in contracting rat skeletal muscles. Am J Physiol 275:E448-E456.
Ihlemann J, Ploug T, HellstenY, Galbo H (1999) Effect of tension on contraction-induced glucose transport in rat skeletal muscle. Am J Physiol 277 (2 Pt 1):E208- E214.
Bergman BC, Brooks GA (1999) Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. J Appl Physiol 86:479-487.
Wood IS, Trayhurn P (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89(1):3-9.
Diez-Sampedro A, Eskandari S, Wright EM, Hirayama BA(2001) Na+-to-sugar stoichiometry of SGLT3.Am J Physiol Renal Physiol 280:F278-F282.
Zhao FQ, KeatingAF (2007) Functional properties and genomics of glucose transporters. Curr Genomics. 8(2): 113-128.
Kraniou Y, Cameron-Smith D, Misso M, Collier G, Hargreaves M (2000) Effects of exercise on GLUT-4 and glycogenin gene expression in human skeletal muscle. J Appl Physiol 88:794-796.
Pessin JE, Thurmond DC, Elmendorf JS, Coker KJ, Okada S (1999) Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. Location! Location! Location! J Biol Chem 274:2593-2596.
Ploug T, van Deurs B, Ai H, Cushman SW, Ralston E (1998)Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions. J Cell Biol 142:1429-1446.
Zhou M, Vallega G, Kandror KV, Pilch PF (2000) Insulin-mediated translocation of GLUT-4-containing vesicles is preserved in denervated muscles. Am J Physiol Endocrinol Metab 278:E1019-E1026.
Watson RT, Pessin JE (2001) Intracellular organization of insulin signaling and GLUT4 translocation. Recent Prog Horm Res 56:175-193.
Holloszy JO (2005) Exercise-induced increase inmuscle insulin sensitivity J Appl Physiol 99:338-343.
Kuo CH, Hunt DG, Ding Z, Ivy JL (1999) Effect of carbohydrate supplementation on postexercise GLUT-4 protein expression in skeletal muscle. J Appl Physiol 87:2290-2295.
Kawanaka K, Han DH, Nolte LA, Hansen PA, Nakatani A, Holloszy JO (1999) Decreased insulinstimulated GLUT-4 translocation in glycogensupercompensated muscles of exercised rats. Am J Physiol 276:E907-E912.
Derave W, Lund S, Holman GD, Wojtaszewski J, Pedersen O, Richter EA (1999) Contractionstimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content. Am J Physiol 277:E1103-E1110.
Kristiansen S, Gade J, Wojtaszewski JF, Kiens B, Richter EA (2000) Glucose uptake is increased in trained vs. untrained muscle during heavy exercise. J Appl Physiol 89:1151-1158.
Hayashi T, Wojtaszewski JF, Goodyear LJ (1997) Exercise regulation of glucose transport in skeletal muscle. Am J Physiol 273:E1039-E1051.
Shibata H, Omata W, Suzuki Y, Tanaka S, Kojima I (1996) A Synthetic Peptide Corresponding to the Rab4 Hypervariable Carboxyl-terminal Domain Inhibits Insulin Action on Glucose Transport in Rat Adipocytes. J Biol Chem. 271(16):9704-9709
Vavvas D, Apazidis A, Saha AK, Gamble J, Patel A, Kemp BE, Witters LA, Ruderman NB (1997) Contr action-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle. J Biol Chem 272:13255-13261.
Alessi DR, Downes CP (1998) The role of PI 3- kinase in insulin action. Biochim Biophys Acta 1436:151-164.
Russell RR, Bergeron R, Shulman GI, Young LH (1999) Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol 277:H643- H649.
Ojuka EO, Nolte LA, Holloszy JO (2000) Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro. J Appl Physiol 88:1072-1075.
Holmes BF, Kurth-Kraczek EJ, Winder WW (1999) Chronic activation of 5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen inmuscle. J Appl Physiol 87:1990-1995.
Bergeron R, Russell RR, Young LH, Ren JM,Marcucci M, Lee A, Shulman GI (1999) Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 276:E938-E944.
Khayat ZA, Tsakiridis T, Ueyama A, Somwar R, Ebina Y, KlipA(1998) Rapid stimulation of glucose transport by mitochondrial uncoupling depends in part on cytosolic Ca2+ and Cpkc. Am J Physiol 275:C1487-C1497.
Whitehead JP, Molero JC, Clark S, Martin S, Meneilly G, James DE (2001) The role of Ca2+ in insulin-stimulated glucose transport in 3T3-L1 cells. J Biol Chem 276(30):27816-27824.
Joyner MJ, Niki MD (1997) Nitric oxide and vasodilation in human limbs. J Appl Physiol 83(6):1785-1796.
ReidMB (1998) Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol Scand 162:401-409.
Ji LL, Gomez-Cabrera MC, Vina J (2006) Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ann NYAcad Sci 1067:425-435.
Baron AD, Clark MG (1997) Role of blood flow in the regulation of muscle glucose uptake. Annu Rev Nutr 17:487-499.
Higaki Y, Hirshman MF, Fujii N, Goodyear LJ (2001) Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes 50: 241-247.
Lira VA, Soltow QA, Long JHD, Betters JL, Sellman JE, Criswell DS (2007) Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle. Am J Physiol Endocrinol Metab 293:E1062-E1068.
Pritzlaff CJ, Wideman L, Blumer J, Jensen M, Abbott RD, Gaesser GA, Veldhuis JD, Weltman A (2000) Catecholamine release, growth hormone secretion, and energy expenditure during exercise vs. recovery in men. J Appl Physiol 89:937-946.
Greiwe JS, Hickner RC, Shah SD, Cryer PE,Holloszy JO (1999) Norepinephrine response to exercise at the same relative intensity before and after endurance exercise training. J Appl Physiol 86:531-535.
Febbraio MA, Lambert DL, Starkie RL, Proietto J,Hargreaves M (1998) Effect of epinephrine on muscle glycogenolysis during exercise in trained men. J Appl Physiol 84:465-470.
Coker RH, Krishna MG, Lacy DB, Bracy DP, Wasserman DH (1997) Role of hepatic alpha- and beta-adrenergic receptor stimulation on hepatic glucose production during heavy exercise. Am J Physiol 273:E831-E838.