2009, Número 2
<< Anterior Siguiente >>
Rev Educ Bioquimica 2009; 28 (2)
El factor inducido por lahipoxia-1 (HIF-1) y la glucólisis en las células Tumorales
Marín-Hernández A
Idioma: Español
Referencias bibliográficas: 37
Paginas: 42-51
Archivo PDF: 294.92 Kb.
RESUMEN
El factor inducido por la hipoxia 1 (HIF-1) tiene un papel
fundamental en la respuesta a la baja tensión del oxígeno,
ya que regula la expresión de una gran variedad de genes,
cuyos productos participan en procesos como la
angiogénesis, elmetabolismo energético, la eritropoyesis
y la proliferación celular. Diversos estudios indican que
existe una relación estrecha entre el cáncer y el HIF-1,
debido a que losmecanismos que regulan su expresión se
encuentran alterados en las células tumorales. El HIF-1
es uno de los factores involucrados en el incremento de
la glucólisis en las células tumorales, ya que aumenta la
actividad de ciertas isoformas de las enzimas glucolíticas
(GLUT1, GLUT3, HKI, HKII, PFK-L, ALD-A, ALD-C,
PGK1, ENO-α, PYK-M2, LDH-A, PFKFB-3),
promoviendo un aumento del flujo glucolítico (producción
de lactato, H+,ATP e intermediarios de la glucólisis). Por
otra parte, algunas de estas isoformas participan
activamente en otros procesos como son la inhibición de
la apoptosis (HKI y HKII), la transcripción de histonas
(LDH-A) y la migración celular (ENO-α), las cuales
favorecen el desarrollo tumoral.
REFERENCIAS (EN ESTE ARTÍCULO)
Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88: 1474-1480.
Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs W, Semenza GL, Simons JW(1999) Overexpresion of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res 59: 5830-5835.
Fedele AO, Whitelaw ML, Peet DJ (2002) Regulation of gene expression by the hipoxia-inducible factors.Molecular Interventions 2, 229-243.
Pouysségur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441: 437-443.
Ward JPT (2008) Oxygen sensors in context. Biochim. Biophys. Acta 1777: 1-14.
Bell EL, Klimova TA, Eisenbart J,Moraes CT,Murphy MP, Budinger GRS, Chandel NS (2007) the Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell. Biol. 177: 1029-1036.
GuzyRD, Schumacker PT (2006) Oxygen sensing bymitochondrial at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 91: 807-819.
Lee K, Roth RA, LaPres JJ. (2007) Hypoxia, drug therapy and toxicity. Pharmacol. Ther.113, 229-246.
Pouysségur J, Mechta-Grigoriou (2006) Redox regulation of the hypoxia-inducible factor. Biol. Chem. 387: 1337-1346.
Burant CF, Bell GI (1992) Mammalian facilitative glucosa transporters: evidence for similar substrate recognition sites in functionally monomeric proteins. Biochemistry 31: 10414-10420.
Marín-Hernández A, Rodríguez-Enríquez S, Vital- González PA, Flores-Rodríguez FL, Macías-Silva M, Sosa-GarrochoM,Moreno-Sánchez R (2006) Determining and understanding the control of glycolysis in fasegrowth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J. 273: 1975-1988.
Alterberg B, Greulich KO (2004) Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84: 1014-1020.
MachedaML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J. Cell. Physiol. 202: 654-662.
Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J. Exp. Biol. 206:2049-2057.
Kim JW, DangCV(2005)Multifaceted roles of gycolytic enzymes. TRENDS Biochem. Sci. 30: 142-150.
van Wijk R, van Solinge WW (2005) The energy-less red blood cell is lost-erythrocyte enzyme abnormalities of glycolysis. Blood 106: 4034-4042.
Danaway GA, Kasten TP, Sebo T, Trapo R (1988) Análisis of the phosphofructokinase subunits and isoenzymes in human tissues. Biochem. J. 251:677-683.
Pezza JA, Choi KH, Berardini TZ, Beernink PT, Allen KN, Tolan DR (2003) Spatial clustering of isozyme-specific residues reveals unlikely determinants of isozyme specificity in fructose-1,6-bisphosphate aldolase. J. Biol. Chem. 278: 17307-17313.
Lay AJ, Jiang XM,, Kisker O, Flynn E, Underwood A, Condron R, Hogg PJ (2000) Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase. Nature 408: 869-873.
RepisoA, Ramirez BajoMJ, Vives Corrons JL, Carreras J, Climent F (2005) Phosphoglyceratemutase BB isoenzyme deficiency in a patient with non-spherocytic anemia: familial and metabolic studies. Haematologica 90: 257-259.
Fundele R, KrietschWKG (1985) Purification and properties of the phosphoglycerate mutase isoenzymes from the mouse. Comp. Biochem. Physiol. 81:965-968.
Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, CarneroA, Beach D (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res. 65: 177-185.
TarahashiY, Tarahashi S,Yoshimi T andMiura T (1998) Hypoxia-induced expression of phosphoglycerate mutase B in fibroblast. Eur. J. Biochem. 254:497-504.
Pancholi V (2001) Multifunctional α-enolase: its role in deseases. Cell. Mol. Life Sci. 58:902-920.
Shimizu A, Suzuki F, Kato K (1983) Characterization of alpha alpha, beta beta, gamma gamma and alpha gamma human enolase isoenzymes, and preparation of hybrid enolases (alpha gamma, beta gamma an alpha beta) from homodimeric froms. Biochem. Biophys. Acta 748:278- 284.
Imamura K, Tanaka T (1982) Pyruvate kinase isozymes from rat. Methods Enzymol. 90:150-165.
Mazurek S,GrimmH, Boschek CB,Vaupel P, Eigenbrodt E (2002) Pyruvate kinase type M2: a crossroad in the tumor metabolome. Brit. J. Nutr. 87:23-29.
Chirstofk HR, Vander Heiden MG., Wu N, Asara JM, Cantley LC (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181-188.
Drent M, Cobben NAM, Henderson RF,Wouters EFM, van Dieijen-Visser M (1996) Usefulness of lactate dehydrogenase and its isoenzymes as indicators of lung damage or inflammation. Eur. Respir. J. 9:1736-1742.
Buhl SN, Jackson KY, Vanderlinde RE (1977) The effect of temperature on kinetic constants of human lactate dehydrogenase 1 and 5. Clin. Chem.Acta 80: 265-270.
Okar DA, Manzano A, Navarro-Sabate A, Riera Ll, Bartrons R, Lange AJ (2001) PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2, 6- bisphosphate. TRENDS Biochem. Sci. 26: 30-35.
Obach M, Navarro-Sabate A, Caro J, Kong X, Duran J, Gómez M, Perales JC, Ventura F, Rosa JL, Bartrons R (2004) 6-phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J. Biol. Chem. 279: 53562-53570.
HalestrapAP,Meredith (2004) The SLC16 gene familyfrom monocarboxilate transporters (MTCs) to aromatic amino acid transporters and beyond. Pflugers Arch. 447:619-628.
Ullah MS, Davis AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J. Biol. Chem. 281:9030-9037.
Balinsky D, Platz CE, Lewis JW (1983) Isozyme patterns of normal, benign, and malignant human breast tissues. Cancer Res. 43: 5895-5901.
Atsumi T, Chesney J, Metz A, Leng L, Donnelly S, Makita Z, Mitchelll R, Bucala R (2002) High expression of inducible 6-phosphofructokinase-2-kinase/fructose- 2,6-biphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res. 62: 5881-5887.
Weidemann A, Johnson RS (2008) Biology of HIF-1α. Cell Death Differ. 15: 621-627.