2011, Número 2
Siguiente >>
TIP Rev Esp Cienc Quim Biol 2011; 14 (2)
Estudio sintético y caracterización por infrarrojo de derivados 2-(AMINO)-1,4-naftoquinona y su evaluación antibacteriana preliminar
Andrade-Guel ML, López-López LI, Sáenz-Galindo A
Idioma: Español
Referencias bibliográficas: 27
Paginas: 75-82
Archivo PDF: 157.36 Kb.
RESUMEN
Las naftoquinonas son compuestos de origen natural o sintético que han mostrado importantes actividades biológicas, resaltando como agentes antibacterianos, antifúngicos, antimaláricos y anticancerígenos. En el presente trabajo se reportan los resultados de la síntesis utilizando diferentes métodos como la síntesis a temperatura ambiente (STA), síntesis por calentamiento convencional (SCC) y síntesis asistida por ultrasonido (SAU) de los derivados 2-(amino)-1,4-naftoquinona. Se realizó su caracterización por espectroscopía de infrarrojo. Además se determinó su capacidad como agentes antibacterianos frente a las cepas
Proteus sp. y
Enterococcus faecalis. La mayor actividad lo mostró el derivado 2-bencilamino-1,4-naftoquinona.
REFERENCIAS (EN ESTE ARTÍCULO)
Lana, E., Carazza, F. & Takahashi, J. Antibacterial evaluation of 1,4-benzoquinone derivatives. J. Agric. Food Chem. 54(6), 2053-2056 (2006).
Ferreira, D.T. et al. Antimicrobial activity and chemical investigation of Brazilian Drosera. Memórias do Intituto Oswaldo Cruz, Rio de Janeiro 99, 753-755 (2004).
Tran, T., Saheba, E. & Arcerio, A. Quinones as antimycobacterial agents. Bioorg. Med. Chem. 12, 4809-4813 (2004).
Da Silva, J.L., Mesquita, A.R. & Ximenes, E.A. In vitro synergic of b-lapachone and isoniazide on the growth of Mycobacterium fortuitum and Mycobacterium smegmatis. Mem Inst Oswaldo Cruz 104(4), 580-582 (2009).
López L., Ll.I. et al. Las naftoquinonas: más que pigmentos naturales. Revista Mexicana de Ciencias Farmacéuticas 42(1), 6-17 (2011).
Chang, H.X. et al. Design of antineoplastic agents based on the “2- phenylnaphthalene-type” structural pattern. Synthesis and biological activity of 2-chloro-3-(substituted phenoxy)-1,4- naphthoquinones and related 5,8-dihydroxy-1,4- naphthoquinones. J. Med. Chem. 42(3), 405-408 (1999).
Bipul, R., Acharya, B.R., Bhattacharyya, B. &Chakrabarti, G. The natural naphthoquinone Plumbagin exhibits antiproliferative activity and disrupts the microtubule network through tubulin binding. Biochem. 47(30), 7838-7845 (2008).
Kumar, S. et al. Indoleamine 2,3-dioxygenase is the anticancer target for a novel series of potent naphthoquinone-based inhibitors. J. Med. Chem. 51(6), 1706-1718 (2008).
Kongkathip, N. et al. Transforming Rhinacanthin analogues from potent anticancer agents into potent antimalarial agents. J. Med. Chem. 53(3), 1211-1221 (2010).
Eufranio, N., Da Silva, J. & De Deus, F.C. 3-Arylamino and 3-alkoxy-nor-b-lapachone derivatives: synthesis and cytotoxicity against cancer cell lines. J. Med. Chem. 53, 504-508 (2010).
Gaitán, R. et al. Síntesis de análogos furonaftoquinónicos con posible actividad antimalárica contra Plasmodium falciparum. Revista Cubana de Química 19, 64-66, (2007).
Malamidou, E., Spyroudis, S. & Tsanakopoulou, M. Studies on the reactivity of aryliodonium ylides of 2-hydroxy-1,4- naphthoquinone: reactions with amines. J. Org. Chem. 68(14), 5627-5631 (2003).
Jiang, M. & Chuang, Ch. Manganese (III) acetate initiated oxidative free radical reactions between 2-amino-1,4-naphthoquinones and b-dicarbonyl compounds. J. Org. Chem. 65, 5409-5412 (2000).
Wu, Y., Chuang, Ch. & Lin, P. Oxidative free radical reactions between 2-amino-1,4-naphthoquinones and carbonyl compounds. Tetrahedron 57, 5543-5549 (2001).
Pérez, E. & Díaz, R. Synthesis and pharmacophore modeling of naphthoquinone derivatives with cytotoxic activity in human promyelocytic leukemia HL-60 cell line. J. Med. Chem. 50, 696-706 (2007).
Wang, Y. Bulky DNA lesions induced by reactive oxygen species. Chem. Res. Toxicol. 21, 276-281 (2008).
Jiménez-Alonso, S. et al. Electronic and cytotoxic properties of 2-amino-naphtho[2,3-b]furan-4,9-diones. J. Org. Chem. 76(6), 1634-1643 (2011).
Leyva, E., López, Ll. I., Loredo-Carrillo, S.E., Rodríguez-Kessler, M. &Montes-Rojas, A. Synthesis, spectral and electrochemical characterization of novel 2-(fluoroanilino)-1,4-naphthoquinones. J. Fluorine Chem. 132(2), 94-101 (2011).
Anastas, P.T. & Warner, J.C. Green Chemistry, theory and practice (Oxford University Press, New York, 1998). 152 págs.
Kharisov, I.B. & Ortiz, U. Uso del ultrasonido en procesos químicos. Ingenierías 2, 13-21 (1999).
Li, J.-T., Zhang, X.-H. & Lin, Z.-P. An improved synthesis of 1,3,5-triaryl-2-pyrazolines in acetic acid aqueous solution under ultrasound irradiation. Beilstein J. Org. Chem. 3(13) (2007).
Becerra, G., Plascencia, A., Luévanos, A., Domínguez, M. & Hernández, I. Mecanismo de resistencia a antimicrobianos en bacterias. Enf. Inf. Microbiol. 29(2), 70-76 (2009).
Javier-Zepeda, C.A. Resistencia de las bacterias a los antibióticos, Revista Médica Hondureña 66(2), 88-92 (1998).
Rodríguez, E., Gaitán, R., Méndez, D., Martelo, J. & Zambrano, R. Análogos de quinonas naturales con actividad antibacteriana. Scientia et Technica 33, 281-283 (2007).
Salmon-Chemin, L. et al. 2- and 3-Substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity. J. Med. Chem. 44(4), 548-565 (2001).
Claessens, S., Jacobs, J., Van Aeken, S., Abbaspour Tehrani, K. & De Kimpe, N. Synthesis of benzo[f]isoindole-4, 9-diones. The J. of Org. Chem. 73(19), 7555-7559 (2008).
Haraguchi, H., Yokoyama, K., Oike, S., Ito, M. & Nozaki, H. Respiratory stimulation and generation of superoxide radicals in Pseudomonas aeruginosa by fungal naphthoquinones. Arch Microbiol. 167(1), 6-10 (1997).