2011, Número 4
Siguiente >>
Biotecnol Apl 2011; 28 (4)
Proteínas que remodelan y degradan la pared celular vegetal: perspectivas actuales
Quiroz-Castañeda RE, Folch-Mallol JL
Idioma: Ingles.
Referencias bibliográficas: 122
Paginas: 205-215
Archivo PDF: 306.34 Kb.
RESUMEN
El material lignocelulósico constituye una materia prima potencial para la obtención de azúcares fermentables y biocombustibles. Algunas bacterias y hongos con cualidades ligninolíticas, pueden utilizar los desechos lignocelulósicos de la naturaleza (forestales, agrícolas y de jardín) como fuente de carbono. Tal actividad de degradación podría complementarse con la actividad de las proteínas que remodelan la pared celular, como las expansinas, identificadas en plantas. Estas proteínas pueden relajar los componentes de la pared celular y promover el crecimiento. Participan en procesos de desarrollo como la organogénesis, la abscisión, la maduración de los frutos, el crecimiento del tubo polínico, entre otros, donde ocurren modificaciones de la pared celular. Se ha planteado que las proteínas del tipo expansinas rompen los puentes de hidrógeno que unen los filamentos de celulosa y la celulosa con otros polisacáridos, mediante un proceso no enzimático, que favorece la posterior degradación de la pared celular. En este trabajo se hace una revisión bibliográfica acerca de las características de la pared celular vegetal y su composición, así como de las enzimas ligninolíticas de bacterias y hongos que la degradan, las propiedades y el potencial que tienen las proteínas con actividad tipo expansina para hacer más eficiente la liberación de azúcares reductores del material lignocelulósico.
REFERENCIAS (EN ESTE ARTÍCULO)
Zhang YH, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng. 2004; 88(7):797-824.
Zhong R, Ye ZH. Regulation of cell wall biosynthesis. Curr Opin Plant Biol. 2007; 10(6):564-72.
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66(3):506-77.
Aro N, Pakula T, Penttilä M. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev. 2005;29(4):719-39.
Gray KA, Zhao L, Emptage M. Bioethanol. Curr Opin Chem Biol. 2006;10(2): 141-6.
Fry SC. Plant Cell Walls. In: Encyclopedia of Life Sciences [Internet]. Chichester: John Wiley & Sons Ltd: 2001 Apr [cited 2011 May 17]. Available in: http://www.els.net/WileyCDA/ElsArticle/refId-a0001682.html
Levy I, Shani Z, Shoseyov O. Modification of polysaccharides and plant cell wall by endo-1,4-beta-glucanase and cellulose-binding domains. Biomol Eng. 2002;19(1):17-30.
Hildén L, Johansson G. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol Lett. 2004;26(22):1683-93.
Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol. 2002; 5(2):53-63.
Atalla R. The Structures of Native Celluloses. 10th international symposium on wood and pulping chemistry. TAPPI Press. 1993;1:608-14.
Béguin P, Aubert JP. The biological degradation of cellulose. FEMS Microbiol Rev. 1994;13(1):25-58.
Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, et al. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol. 2005;8(3):195-204.
Saha BC. Hemicellulose bioconversion. J Ind Microbiol Biotechnol. 2003;30(5): 279-91.
Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol. 2008;35(5):377-91.
Scheller H, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61:263-89.
Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE. Understanding factors that limit enzymatic hydrolysis of biomass: characterization of pretreated corn stover. Appl Biochem Biotechnol. 2005;121-124: 1081-99.
Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv. 2009;27(2):185-94.
Cunningham RE, López GD. Etanol de lignocelulósicos: Tecnología y perspectivas. Santa Fe: Universidad de Santiago de Compostela, Servicio de Publicaciones e Intercambio Científico; 1994.
Hammel KA. Extracellular free radical biochemistry of ligninolytic fungi. New J Chem. 1996;20:195-8.
Doi RH. Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann New York Acad Sci. 2008;1125:267-79.
Khanna S, Gauri. Regulation, purification, and properties of xylanase from Cellulomonas fimi. Enzyme Microbial Technol. 1993;15(11):990-5.
Braithwaite KL, Black GW, Hazlewood GP, Ali BR, Gilbert HJ. A non-modular endo-beta-1,4-mannanase from Pseudomonas fluorescens subspecies cellulosa. Biochem J. 1995;305(Pt 3):1005-10.
Arcand N, Kluepfel D, Paradis FW, Morosoli R, Shareck F. Beta-mannanase of Streptomyces lividans 66: cloning and DNA sequence of the manA gene and characterization of the enzyme. Biochem J. 1993;290(Pt 3):857-63.
Murty MV, Chandra TS. Purification and properties of an extra cellular xylanase enzyme of Clostridium strain SAIV. Antonie van Leeuwenhoek. 1992;61(1):35-41.
Lin LL, Thomson JA. An analysis of the extracellular xylanases and cellulases of Butyrivibrio fibrisolvens H17c. FEMS Microbiology Letters. 1991;84(2):197-204.
Tomme P, Warren RA, Gilkes NR. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol. 1995;37:1-81.
Sonan GK, Receveur-Brechot V, Duez C, Aghajari N, Czjzek M, Haser R, et al. The linker region plays a key role in the adaptation to cold of the cellulase from an Antarctic bacterium. Biochem J. 2007; 407(2):293-302.
Dashtban M, Schraft H, Qin W. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci. 2009;5(6):578-95.
Lee SS, Ha JK, Kang HS, Mcallister TA, Cheng KJ. Overview of energy metabolism, substrate utilization and fermentation characteristics of ruminal anaerobic fungi. Korean J Anim Nutr Feedstuffs. 1997; 21(4):295-314.
Nicholson MJ, Theodorou MK, Brookman JL. Molecular analysis of the anaerobic rumen fungus Orpinomyces - insights into an AT-rich genome. Microbiology. 2005;151(Pt 1):121-33.
Eberhardt RY, Gilbert HJ, Hazlewood GP. Primary sequence and enzymic properties of two modular endoglucanases, Cel5A and Cel45A, from the anaerobic fungus Piromyces equi. Microbiology. 2000;146(Pt 8):1999-2008.
Steenbakkers PJM, Li XL, Ximenes EA, Arts JG, Chen H, Ljungdahl LG, et al. Noncatalytic docking Domains of cellulosomes of anaerobic fungi. J Bacteriol. 2001 Sep;183(18):5325-33.
Quiroz-Castañeda RE, Balcázar-López E, Dantán-González E, Martinez A, Folch-Mallol J, Martínez C. Characterization of cellulolytic activities of Bjerkandera adusta and Pycnoporus sanguineus on solid wheat straw medium. Electr J Biotechnol. 2009 Oct 15 [cited 2011 May 17];12(4)[about 13 p.]. Available from: http://www.ejbiotechnology.cl/content/vol12/issue4/full/3/index.html.
Ding S, Ge W, Buswell JA. Cloning of multiple cellulase cDNAs from Volvariella volvacea and their differential expression during substrate colonization and fruiting. FEMS Microbiol Lett. 2006;263(2):207-13.
Koseki T, Mese Y, Fushinobu S, Masaki K, Fujii T, Ito K, et al. Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii. Appl Microbiol Biotechnol. 2008;77(6):1279-85.
Chi Z, Chi Z, Zhang T, Liu G, Li J, Wang X. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnol Adv. 2009;27(3):236-55.
Kikuchi T, Jones JT, Aikawa T, Kosaka H, Ogura N. A family of glycosyl hydrolase family 45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. FEBS Lett. 2004;572(1-3):201-5.
CAZy. Carbohydrate-Active Enzymes. Glycoside Hydrolase family classification [Internet]. Marseille: AFMB - CNRS - Universités Aix-Marseille I & II. c1998-2011 – [updated 2011 Nov 18, cited 2011 Nov 21]. Available from: http://www.cazy.org/Glycoside-Hydrolases.html.
Divne C, Ståhlberg J, Teeri TT, Jones TA. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol. 1998; 275(2):309-25.
Stone B. Cellulose: Biogenesis and Biodegradation. In: Encyclopedia of Life Sciences [Internet]. Chichester: John Wiley & Sons Ltd: 2005 Sep [cited 2011 May 17]. [cited 2011 May 17]. Available in: http://www.els.net/WileyCDA/ElsArticle/refId-a0003297.html.
Sadana JC, Patil RV. 1,4-beta-D-glucan cellobiohydrolase from Sclerotium rolfsii. Methods Enzymol. 1988;160:307-14.
Baldrian P, Valásková V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev. 2008;32(3):501-21.
Hamada N, Ishikawa K, Fuse N, Kodaira R, Shimosaka M, Amano Y, et al. Purification, characterization and gene analysis of exo-cellulase II (Ex-2) from the white rot basidiomycete Irpex lacteus. J Biosci Bioeng. 1999;87(4):442-51.
Yoon JJ, Kim YK. Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. J Microbiol. 2005;43(6):487-92.
Lynd LR, Cushman JH, Nichols RJ, Wyman CE. Fuel ethanol from cellulosic biomass. Science. 1991;251(4999):1318-23.
Sadana JC, Lachke AH, Patil RV. Endo-(1-4)-beta-D-glucanases from Sclerotium rolfsii -purification, substrate specificity, and mode of action. Carbohydr Res. 1984; 133:297-312.
Ding SJ, Ge W, Buswell J. Secretion, purification and characterisation of a recombinant Volvariella volvacea endoglucanase expressed in the yeast Pichia pastoris. Enzyme Microbial Technol. 2002; 31:621-6.
Valásková V, Baldrian P. Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus - production of extracellular enzymes and characterization of the major cellulases. Microbiology. 2006;152:3613-22.
Onishi N, Tanaka T. Purification and properties of a galacto- and gluco-oligosaccharide-producing betaglycosidase from Rhodotorula minuta IFO879. J Ferment Bioeng. 1996;82(5):439-43.
Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS. Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol. 2005; 67(5):577-91.
Kimura I, Sasahara H, Tajima S. Purification and characterization of two xylanases and an arabinofuranosidase from Aspergillus sojae. J Ferment Bioeng. 1995;80(4):334-9.
Hermoso JA, Sanz-Aparicio J, Molina R, Juge N, González R, Faulds CB. The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family. J Mol Biol. 2004;338(3):495-506.
Ramírez L, Arrizon J, Sandoval G, Cardador A, Bello-Mendoza R, Lappe P, et al. A new microplate screening method for the simultaneous activity quantification of feruloyl esterases, tannases, and chlorogenate esterases. Appl Biochem Biotechnol. 2008;151(2-3):711-23.
Liu X, Ding S. Molecular characterization of a new acetyl xylan esterase (AXEII) from edible straw mushroom Volvariella volvacea with both de-O-acetylation and de-N-acetylation activity. FEMS Microbiol Lett. 2009;295(1):50-6.
Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR. Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour Technol. 2008;99(11):4997-5005.
Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003; 54:519-46.
Ikehata K, Buchanan I, Smith D. Recent developments in the production of extracellular fungal peroxidases and laccases for waste treatment. J Environ Eng Science. 2004;3(19):1-19.
Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martínez MJ, Martínez AT. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem. 1999;274(15):10324-30.
Wang Y, Vazquez-Duhalt R, Pickard MA. Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese. Can J Microbiol. 2003;49(11):675-82.
Mester T, Field JA. Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem. 1998;273(25):15412-7.
Dantán-González E, Vite-Vallejo O, Martínez-Anaya C, Méndez-Sánchez M, González MC, Palomares LA, et al. Production of two novel laccase isoforms by a thermotolerant strain of Pycnoporus sanguineus isolated from an oil-polluted tropical habitat. Int Microbiol. 2008 Sep;11(3):163-9.
McQueen-Mason S, Durachko DM, Cosgrove DJ. Two endogenous proteins that induce cell wall extension in plants. Plant Cell. 1992;4(11):1425-33.
Cosgrove DJ. Loosening of plant cell walls by expansins. Nature. 2000; 407(6802):321-6.
Shcherban TY, Shi J, Durachko DM, Guiltinan MJ, McQueen-Mason SJ, Shieh M, et al. Molecular cloning and sequence analysis of expansins-a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc Natl Acad Sci USA. 1995; 92(20):9245-9.
Li Y, Jones L, McQueen-Mason S. Expansins and cell growth. Curr Opin Plant Biol. 2003;6(6):603-10
Lee Y, Choi D, Kende H. Expansins: ever-expanding numbers and functions. Curr Opin Plant Biol. 2001;4(6):527-32.
Cosgrove DJ, Bedinger P, Durachko DM. Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci USA. 1997;94(12):6559-64.
Li LC, Cosgrove DJ. Grass group I pollen allergens (b-expansins) lack proteinase activity and do not cause wall loosening via proteolysis. Eur J Biochem. 1999; 263(1):33-40.
Cho HT, Kende H. Expression of Expansin Genes Is Correlated with Growth in Deepwater Rice. Plant Cell. 1997;9(9): 1661-71.
McQueen-Mason S, Cosgrove DJ. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc Natl Acad Sci USA. 1994;91(14):6574-8.
Wei W, Yang C, Luo J, Lu C, Wu Y, Yuan S. Synergism between cucumber alpha-expansin, fungal endoglucanase and pectin lyase. J Plant Physiol. 2010; 167(14):1204-10.
Sampedro J, Cosgrove DJ. The expansin superfamily. Genome Biol. 2005; 6(12):242.
Cosgrove DJ. Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell. 1997;9(7):1031-41.
Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filée P, et al. Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc Natl Acad Sci USA. 2008;105(44):16876-81.
Whitney SE, Gidley MJ, McQueen-Mason SJ. Probing expansin action using cellulose/hemicellulose composites. Plant J. 2000;22(4):327-34.
Cho HT, Cosgrove DJ. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell. 2002; 14(12):3237-53.
Rose JKC, Lee HH, Bennett AB. Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci USA. 1997;94(11):5955– 60.
Rose JK, Cosgrove DJ, Albersheim P, Darvill AG, Bennett AB. Detection of expansin proteins and activity during tomato fruit ontogeny. Plant Physiol. 2000; 123(4):1583-92.
Civello PM, Powell AL, Sabehat A, Bennett AB. An expansin gene expressed in ripening strawberry fruit. Plant Physiol. 1999;121(4):1273-80.
Li LC, Bedinger PA, Volk C, Jones AD, Cosgrove DJ. Purification and characterization of four beta-expansins (Zea m 1 isoforms) from maize pollen. Plant Physiol. 2003;132(4):2073-85.
Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D. The growing world of expansins. Plant Cell Physiol. 2002;43(12):1436-44.
Kende H, Bradford K, Brummell D, Cho HT, Cosgrove D, Fleming A, et al. Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol. 2004; 55(3):311-4.
Dermatsev V, Weingarten-Baror C, Resnick N, Gadkar V, Wininger S, Kolotilin I, et al. Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus Glomus intraradices on tomato (Solanum lycopersicum). Mol Plant Pathol. 2010;11(1):121-35.
Darley CP, Li Y, Schaap P, McQueen-Mason SJ. Expression of a family of expansin-like proteins during the development of Dictyostelium discoideum. FEBS Lett. 2003;546(2-3):416-8.
Kim ES, Lee HJ, Bang WG, Choi IG, Kim KH. Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnol Bioeng. 2009;102(5):1342-53.
Laine MJ, Haapalainen M, Wahlroos T, Kankare K, Nissinen R, Kassuwi S, et al. The cellulase encoded by the native plasmid of Clavibacter michiganensis ssp. sepedonicus plays a role in virulence and contains an expansin-like domain. Physiol Mol Plant Pathol. 2000;57(5):221-33.
Lee HJ, Lee S, Ko HJ, Kim KH, Choi IG. An expansin-like protein from Hahella chejuensis binds cellulose and enhances cellulase activity. Mol Cells. 2010; 29(4):379-85.
Reinhardt D, Wittwer F, Mandel T, Kuhlemeier C. Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell. 1998;10(9):1427-37.
Baluska F, Salaj J, Mathur J, Braun M, Jasper F, Samaj J, et al. Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol. 2000;227(2):618-32.
Staff IA, Taylor PE, Smith P, Singh MB, Knox RB. Cellular localization of water soluble, allergenic proteins in rye-grass (Lolium perenne) pollen using monoclonal and specific IgE antibodies with immunogold probes. Histochem J. 1990;22(5):276-90.
Chen F, Bradford KJ. Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol. 2000;124(3):1265-74.
Lee Y, Kende H. Expression of β-expansins is correlated with elongation of internodes in deepwater rice. Plant Physiol. 2001;127(2): 985-97.
Wu Y, Meeley RB, Cosgrove DJ. Analysis and expression of the α-expansin and β-expansin gene families in maize. Plant Physiol. 2001;126(1):222-32.
Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A. Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci USA. 2001 Sep 25;98(20): 11812-7.
Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C. Induction of leaf primordia by the cell wall protein expansin. Science. 1997; 276(5317):1415-8.
Cho HT, Cosgrove DJ. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2000;97(17):9783-8.
Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell. 1999; 11(11):2203-16.
Gray-Mitsumune M, Mellerowicz EJ, Abe H, Schrader J, Winzéll A, Sterky F, et al. Expansins abundant in secondary xylem belong to subgroup A of the alpha-expansin gene family. Plant Physiol. 2004;135(3):1552-64.
Belfield EJ, Ruperti B, Roberts JA, McQueen-Mason S. Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra. J Exp Bot. 2005;56(413):817-23.
Pezzotti M, Feron R, Mariani C. Pollination modulates expression of the PPAL gene, a pistil-specific beta-expansin. Plant Mol Biol. 2002;49(2):187-97.
Giordano W, Hirsch AM. The expression of MaEXP1, a Melilotus alba expansin gene, is upregulated during the sweetclover-Sinorhizobium meliloti interaction. Mol Plant Microbe Interact. 2004;17(6):613-22.
O’Malley RC, Lynn DG. Expansin message regulation in parasitic angiosperms: marking time in development. Plant Cell. 2000; 12(8):1455-65.
Jones L, McQueen-Mason S. A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineum. FEBS Lett. 2004;559(1-3):61-5.
Colmer TD, Peeters AJ, Wagemaker CA, Vriezen WH, Ammerlaan A, Voesenek LA. Expression of alpha-expansin genes during root acclimations to O2 deficiency in Rumex palustris. Plant Mol Biol. 2004;56(3):423-37.
Huang J, Takano T, Akita S. Expression of alpha-expansin genes in young seedlings of rice (Oryza sativa L.). Planta. 2000;211(4): 467-73.
Ruan YL, Llewellyn DJ, Furbank RT. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell. 2001;13(1):47-60.
Xu J, Tian J, Belanger FC, Huang B. Identification and characterization of an expansin gene AsEXP1 associated with heat tolerance in C3 Agrostis grass species. J Exp Bot. 2007;58(13):3789-96.
Li Y, Darley CP, Ongaro V, Fleming A, Schipper O, Baldauf SL, et al. Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol. 2002; 128(3):854-64.
Lin Z, Ni Z, Zhang Y, Yao Y, Wu H, Sun Q. Isolation and characterization of 18 genes encoding alpha- and beta-expansins in wheat (Triticum aestivum L.). Mol Genet Genomics. 2005;274(5):548-56.
Carey RE, Cosgrove DJ. Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins. Ann Bot. 2007;99(6):1131-41.
Sampedro J, Carey R, Cosgrove D. Genome histories clarify evolution of the expansin superfamily: new insights from the poplar genome and pine ESTs. J Plant Res. 2006;119(1):11-21.
Kudla U, Qin L, Milac A, Kielak A, Maissen C, Overmars H, et al. Origin, distribution and 3D-modeling of Gr-EXPB1, an expansin from the potato cyst nematode Globodera rostochiensis. FEBS Lett. 2005;579(11):2451-7.
Chen XA, Ishida N, Todaka N, Nakamura R, Maruyama J, Takahashi H, et al. Promotion of efficient Saccharification of crystalline cellulose by Aspergillus fumigatus Swo1. Appl Environ Microbiol. 2010;76(8):2556-61.
Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, et al. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem. 2002;269(17):4202-11.
Brotman Y, Briff E, Viterbo A, Chet I. Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol. 2008;147(2):779-89.
Quiroz-Castañeda RE, Martínez-Anaya C, Cuervo-Soto LI, Segovia L, Folch-Mallol JL. Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta. Microb Cell Fact. 2011;10:8.
Cosgrove DJ, inventor; The Penn State Research Foundation, assignee. Enhancement of accessibility of cellulose by expansions. United States Patent US 6326470. 2001 Dec 4.
Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, et al. Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuel Bioprod Bior. 2010;4(1):77-93.
Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. Bio-ethanol the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006;24(12):549-56.
Ballesteros M, Manzanares P. Overview of existing biomass conversion technologies in Latin America [internet]. Madrid: Centro de Investigaciones Energéticas, Medioambien-tales y Tecnológicas; 2009 [cited 2011 May 17]. Available in: http://www.top-biofuel.org/images/stories/pr-reports-website/ANNEX-1-5_WP2_D2-2_Existing-conv-tech.pdf.
Rubin EM. Genomics of cellulosic biofuels. Nature. 2008;454(7206):841-5.
Baker JO, King MR, Adney WS, Decker SR, Vinzant TB, Lantz SE, et al. Investigation of the cell-wall loosening protein expansin as a possible additive in the enzymatic saccharification of lignocellulosic biomass. Appl Biochem Biotechnol. 2000;84-86:217-23.