2011, Número 2
<< Anterior Siguiente >>
Biotecnol Apl 2011; 28 (2)
Búsqueda de actividad inhibidora de proteasas en extractos de cinco especies de ascidias de las costas cubanas
Reytor ML, González Y, Pascual I, Hernández A, Chávez MA, Alonso DRM
Idioma: Ingles.
Referencias bibliográficas: 38
Paginas: 77-82
Archivo PDF: 121.28 Kb.
RESUMEN
Una de las estrategias más promisorias para contarrestar la malaria es controlar la infectividad del parásito Plasmodium, con fármacos dirigidos hacia sus blancos principales. Se ha demostrado que proteasas (pertenecientes a diferentes clases mecanísticas) participan en el mecanismo de infección, por lo que se han convertido en blancos promisorios para el tratamiento de la enfermedad. En este trabajo se investigaron extractos crudos y clarificados de cinco especies de ascidias cubanas en busca de actividad inhibidora de proteasas pertenecientes a diferentes clases mecanísticas. Las ascidias son animales invertebrados que presentan numerosas moléculas bioactivas, aunque solo unos pocos inhibidores de proteasas han sido aislados a partir de ellas. En esta investigación se informa por primera vez la presencia de actividad inhibidora de carboxipeptidasa A y B pancreática bovina, aminopeptidasa N de riñón porcino y subtilisina A de
Bacillus licheniformis en algunos de los extractos de ascidias evaluados. Los extractos más promisorios se caracterizaron con relación al comportamiento de la concentración de extracto en función de la actividad enzimática residual, la determinación de los valores de IC50 y actividad inhibidora específica (SIA), y la evaluación de su actividad proteolítica a través de ensayos zimográficos. Investigaciones actuales se encuentran dirigidas a la purificación y caracterización de estas moléculas.
REFERENCIAS (EN ESTE ARTÍCULO)
Blackman MJ. Proteases involved in erythrocyte invasion by the malaria parasite: function and potential as chemotherapeutic targets. Curr Drug Targets. 2000;1(1):59-83.
Ersmark K, Samuelsson B, Hallberg A. Plasmepsins as potential targets for new antimalarial therapy. Med Res Rev. 2006;26(5):626-66.
Sijwali PS, Koo J, Singh N, Rosenthal PJ. Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol. 2006;150(1):96-106.
Dalal S, Klemba M. Roles for two aminopeptidases in vacuolar hemoglobin catabolism in Plasmodium falciparum. J Biol Chem. 2007;282(49):35978-87.
Withers-Martinez C, Jean L, Blackman MJ. Subtilisin-like proteases of the malaria parasite. Mol Microbiol. 2004;53(1): 55-63.
Rodríguez de la Vega M, Sevilla RG, Hermoso A, Lorenzo J, Tanco S, Diez A, et al. Nna1-like proteins are active metallocarboxypeptidases of a new and diverse M14 subfamily. FASEB J. 2007;21(3):851-65.
Cunningham E, Drag M, Kafarski P, Bell A. Chemical target validation studies of aminopeptidase in malaria parasites using alpha-aminoalkylphosphonate and phosphonopeptide inhibitors. Antimicrob Agents Chemother. 2008;52(9):3221-8.
Hidaka K, Kimura T, Ruben AJ, Uemura T, Kamiya M, Kiso A, et al. Antimalarial activity enhancement in hydroxymethylcarbonyl (HMC) isostere-based dipeptidomimetics targeting malarial aspartic protease plasmepsin. Bioorg Med Chem. 2008;16(23):10049-60.
Lee BJ, Singh A, Chiang P, Kemp SJ, Goldman EA, Weinhouse MI, et al. Antimalarial activities of novel synthetic cysteine protease inhibitors. Antimicrob Agents Chemother. 2003;47(12):3810-4.
Valente C, Guedes RC, Moreira R, Iley J, Gut J, Rosenthal PJ. Dipeptide vinyl sultams: synthesis via the Wittig-Horner reaction and activity against papain, falcipain-2 and Plasmodium falciparum. Bioorg Med Chem Lett. 2006;16(15):4115-9.
Kardong KV. Vertebrados. Anatomía comparada, función, evolución. 2nd ed. Madrid: McGraw-Hill-Interamericana; 1999.
Fujita M, Nakao Y, Matsunaga S, Nishikawa T, Fusetani N. Sodium 1-(12-hydroxy)octadecanyl sulfate, an MMP2 inhibitor, isolated from a tunicate of the family Polyclinidae. J Nat Prod. 2002; 65(12):1936-8.
Kawamura K, Hayata D, Fujiwara S, Yubisui T. Serine protease inhibitors expressed in the process of budding of tunicates as revealed by EST analysis. J Biochem. 1998;124(5):1004-12.
Kumazaki T, Ishii S. Disulfide bridge structure of ascidian trypsin inhibitor I: similarity to Kazal-type inhibitors. J Biochem. 1990;107(3):414-9.
Golich FC, Han M, Crowder MW. Over-expression, purification, and characterization of aminopeptidase N from Escherichia coli. Protein Expr Purif. 2006; 47(2):634-9.
González Y, Tanaka AS, Hirata IY, del Rivero MA, Oliva ML, Araujo MS, et al. Purification and partial characterization of human neutrophil elastase inhibitors from the marine snail Cenchritis muricatus (Mollusca). Comp Biochem Physiol A Mol Integr Physiol. 2007;146(4):506-13.
Scopes R. Protein purification: principles and practice. 2nd ed. Berlin: Springler-Verlag; 1987.
Sober HA, Harte RA, Sober EK. Handbook of biochemistry (selected data for molecular biology). 2nd ed. Ohio: The Chemical Rubber Co.; 1968.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
Mock WL, Liu Y, Stanford DJ. Arazoformyl peptide surrogates as spectrophotometric kinetic assay substrates for carboxypeptidase A. Anal Biochem. 1996; 239:218-22.
Mock WL, Xu D. Catalytic activity of carboxypeptidase B and of carboxypeptidase Y with anisylazoformyl substrates. Bioorg Med Chem Lett. 1999;9:187-92.
Berger A, Schechter I. Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philos Trans R Soc Lond B Biol Sci. 1970;257:249-64.
Erlanger BF, Kowkowsky N, Cohen W. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys. 1961;95:271-8.
Estell DA, Graycar TP, Miller JV, Powers DB, Wells JA, Burnier JP, et al. Probing steric and hydrophobic effects on enzyme-substrate interactions by protein engineering. Science. 1986;233:659-63.
Martin P, Raymond MN, Bricas E, Dumas BR. Kinetic studies on the action of Mucor pusillus, Mucor miehei acid pro-teases and chymosins A and B on a synthetic chromophoric hexapeptide. Biochim Biophys Acta. 1980;612:410-20.
Tieku T, Hooper M. Inhibition of aminopeptidases N, A and W. A re-evaluation of the actions of bestatin and inhibitors of angiotensin converting enzyme. Biochem Pharmacol. 1992;44:1725-30.
Lantz MS, Ciborowski P. Zymographic techniques for detection and characterization of microbial proteases. Methods Enzymol. 1994;235:563-94.
Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Drug development from marine natural products. Nat Rev Drug Discov. 2009;8(1):69-85.
Pascual I, Gil-Parrado S, Cisneros M, Joseph-Bravo P, Díaz J, Possani LD, et al. Purification of a specific inhibitor of py-roglutamyl aminopeptidase II from the marine annelide Hermodice carunculata. In vivo effects in rodent brain. Int J Biochem Cell Biol. 2004;36(1):138-52.
Allary M, Schrevel J, Florent I. Properties, stage-dependent expression and localization of Plasmodium falciparum M1 family zinc-aminopeptidase. Parasitology. 2002;125(Pt 1):1-10.
Flipo M, Beghyn T, Leroux V, Florent I, Deprez BP, Deprez-Poulain RF. Novel selective inhibitors of the zinc plasmodial aminopeptidase PfA-M1 as potential antimalarial agents. J Med Chem. 2007; 50(6):1322-34.
Lavazec C, Boudin C, Lacroix R, Bonnet S, Diop A, Thiberge S, et al. Carboxypeptidases B of Anopheles gambiae as targets for a Plasmodium falciparum transmission-blocking vaccine. Infect Immun. 2007;75(4):1635-42.
Mendiola J, Hernández H, Sariego I, Rojas L, Otero A, Ramírez A, et al. Antimalarial activity from three ascidians: an exploration of different marine invertebrate phyla. Trans R Soc Trop Med Hyg. 2006;100(10):909-16.
Gustafson GL, Finn DJ, Moin K. Dissociation of proteinase-inhibitor complexes by trichloroacetate. Anal Biochem. 1988;169:185-8.
Pascual I, López A, Gómez H, Chappé M, Saroyán A, González Y, et al. Screening of inhibitors of porcine dipeptidyl peptidase IV activity in aqueous extracts from marine organism. Enzyme Microb Tech. 2007;40:414-9.
Delfín J, Martínez I, Antuch W, Morera V, González Y, Rodríguez R, et al. Purification, characterization and immobilization of proteinase inhibitors from Stichodactyla helianthus. Toxicon 1996;34:1367-76.
González Y, Araujo MS, Oliva MLV, Sampaio CAM, Chávez, MA. Purification and preliminary characterization of a plasma kallikrein inhibitor isolated from sea hares Aplysia dactylomela Rang, 1828. Toxicon 2004;43(2):219-23.
Arastu-Kapur S, Ponder EL, Fonović UP, Yeoh S, Yuan F, Fonović M, et al. Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat Chem Biol. 2008;4(3):203-13.