2011, Número 2
<< Anterior Siguiente >>
Biotecnol Apl 2011; 28 (2)
Biorremediación: una herramienta para el saneamiento de ecosistemas marinos contaminados con petróleo
Barrios SMY
Idioma: Ingles.
Referencias bibliográficas: 95
Paginas: 69-76
Archivo PDF: 104.80 Kb.
RESUMEN
En las últimas décadas, paralela al desarrollo de la industria petrolera, ha aumentado la contaminación en los ecosistemas marinos. El vertimiento de petróleo crudo y sus derivados provocan efectos negativos a corto, mediano y largo plazo. La eliminación natural de los contaminantes puede tardar años, e incluso no ocurrir. Para acelerar este proceso y garantizar la reparación del ecosistema dañado, se emplean técnicas de biorremediación. Esta variante emergente de la biotecnología ambiental, se basa en el empleo de la actividad metabólica microbiana (bacterias, hongos, levaduras, algas y tapetes microbianos) para degradar los hidrocarburos del petróleo. Su aplicación tiene dos propósitos esenciales: la bioestimulación de la población autóctona viable, y la bioaumentación (introducción de poblaciones microbianas viables). Su selección requiere el análisis de factores abióticos y bióticos, que influyen en el proceso de biodegradación. Los primeros incluyen los relacionados con el contaminante y las condiciones medioambientales; y los bióticos, lo referente a la población microbiana. En el desarrollo de esta tecnología, se han formulado varios productos comercializables para la limpieza de desastres: fertilizantes construidos por nutrientes con funciones bioestimuladoras; bioproductos conformados por microorganismos; y productos químicos con la función de aumentar o estimular la población microbiana que interviene en el proceso de biodegradación.
REFERENCIAS (EN ESTE ARTÍCULO)
Borrás G. Mareas Negras: catástrofes y accidentes (cited 2010 july 17). Available from: http://www.cetmar.org/documentacion/mareas_negras_catastrofes.htm
Harris R. Gulf spill may far exceed official estimates. National Public Radio. 2010 May 14. Available from http://www.npr.org/templates/story/story.php?storyId=126809525
Martínez-Alonso M, Gaju N. El papel de los tapetes microbianos en la biorrecuperación de zonas litorales sometidas a la contaminación por vertidos de petróleo. Ecosistemas. 2005;14(2):79-91.
Carls MG, Rice SD, Hose JE. Sensitivity of fish embryos to weathered crude oil: Part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval pacific herring (Clupea pallasi). Environ Toxicol Chem. 2001;18:481-93.
Santschi PH, Presley BJ, Wade TL, Garcia-Romero B, Baskaran M. Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. Mar Environ Res. 2001;52(1):51-79.
Hartmann L. Historical development of wastewater treatment processes. In: J Winter, editor. Biotechnology-Environmental processes I. Weinheim:Wiley-VCH; 1999.
Zylstraa GJ, Kukor JJ. What is environmental biotechnology? Curr Opin Biotech 2005;16(3):243-5.
Maier R. Microorganims and organic pollutants. In: Maier R, Pepper IL and CP Gerba, editors. Environmental Microbiology. San Diego, CA: Academic Press; 2000. p. 363-400.
Prasad KS, Kumar NS, Sharma S. Bioremediation: Developments, current practices and perspectives. Genet Eng Biotechnol J. 2010:1-20.
Strong PJ, Burgess JE. Treatment methods for wine-related ad distillery wastewaters: a review. Bioremediat J. 2008;12:70-87.
Prescott LM, Harley JP, Klein DA. Microbiology. Fundamentals of applied microbiology 2002;2:1012-4.
Glazer AN, Nikaido H. Microbial biotechnology: Fundamentals of applied microbiology 2007;8:510-28.
Rodríguez S, Fernández M, Bermúdez RC, Morris H. Tratamiento de efluentes industriales coloreados con Pleurotus sp. Rev Iberoamer Micol. 2003;20(4):164-8.
Field JA, E Jong, G Feijoo-Costa, de Bont JAM. Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol. 1993;11:44-9.
Dua M, Singh A, Sethunathan N, Johri AK. Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol. 2002;59(2-3):143-52.
Saval S. La biorremediación como alternativa para la limpieza de suelos y acuíferos. Ing Cienc Ambient. 1998;34:6-9.
Santiesteban, A. Qué es el petróleo. La Habana: Instituto del Libro; 1969.
Atlas RM, Bartha R. Stimulated biodegradation of oil slicks using oleophilic fertilizers. Environ Sci Technol. 1973;7: 538-41.
Blackburn JW, Hafker WR. The impact of biochemistry, bioavailability and bioactivity on the selection of bioremediation techniques. Trends Biotechnol. 1993; 11:328-33.
Atlas RM. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbial Rev. 1981; 45:180-209.
Otremba Z, Toczek H. Degradation of crude oil film on the surface of seawater: the role of luminous, biological and aquatorial factors. Polish J Environ Stud. 2002; 11(5):555-9.
Proskuriakoz VA, Drabkin AE. Química del petróleo y del gas. Moscú: Mir; 1984.
Nápoles J, Ávalos A. Biorremediación de ecosistemas contaminados con xenobióticos (Internet). Monografias de la Universidad de Oriente, 2008 (cited 13 Jun 2010). Available from: http://monografias.uo.edu.cu/index.php/monografias/article/view/4/6
Gruiz K, Kriston E. In situ bioremediation of hydrocarbon in soil. J Soil Contam. 1995;4:163-73.
Ercoli G, Gálvez J, Di Paola P, Cantero J, Videla S, Medaura M, et al. Análisis y evaluación de parámetros críticos en la biodegradación de hidrocarburos en suelo. Apuntes. Estudio realizado en laboratorio de Bioprocesos, Facultad de Ingeniería. Universidad Nacional de Cuyo, Mendoza, Argentina.
Song HG, Wang X, Bartha R. Bioremediation potential of terrestrial fuel spill. Appl Environ Microbiol. 1990;56:652-6.
Whyte LG, Bourboniére L, Greer CW. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol. 1997;63:3719-23.
León N, Infante C, Arias M, Marquez M, Gorrín A. Biodegradability of Venezuela crude oils. SPE International conference on health, safety, and environment in oil and gas exploration and production, 1998 June 7-10, Caracas, Venezuela.
Joseph IN, Capo MC, Bellota M, Ramos Y, Ramos I, Fuentes M. Aislamiento y selección de microorganismos degradadores de hidrocarburos en la plataforma cubana. Ciencias Biológicas. 1994;27:137-48.
Grifoll M, Selifonov SA, Gatlin CV, Chapman PJ. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds. Appl Environ Microbiol. 1995;61:3711-23.
Sabater J, Viñas M, Vázquez A, Solanas AM, Gandarillas C, Vázquez V, et al. Ensayos de tratabilidad en la recuperación de suelos contaminados por la tecnología de la biorremediación. Residuos. Revista técnica. 2001;59:78-82.
Nápoles J. Ensayos de tratabilidad en suelos contaminados con petróleo. Tesis en opción al título de Máster en Biotecnología. Mención Ambiental. Universidad de Oriente, Cuba; 2005.
Young L, Cerniglia C, editors. Microbial transformation and degradation of toxic organic chemicals. 1st ed. New York: John Wiley & Sons; 1995. p. 629.
Fonseca F. Bioil: Bioproducto para combatir derrames de petróleo en el mar. Tesis en opción al título de Máster. Universidad de la Habana, Cuba; 1995.
Núñez R. Obtención, caracterización y aplicación de un bioproducto bacteriano para la biorremediación de derrames de hidrocarburos. Tesis Doctoral. Universidad de La Habana, Cuba, 2003.
Moat AG, Foster JW. Microbial Physiology. 3rd ed. New York: John Wiley; 1995.
Murado MA, Mirón J, González MP. Tratamiento microbiológico de la contaminación por petróleo en ambientes marinos. Estudio de su posible optimización. En: Seguimiento de la contaminación producida por el accidente del buque Aegean Sea. Centro de Publicaciones, Ministerio de Medio Ambiente. Madrid. 1996. p. 168-85.
Robert M, Mercadé E, Andrés C, Espuny MJ, Manresa MA, Guinea J. Optimización de la producción de biotensoactivos por Pseudomonas aeruginosa 44T1. Grasas aceites. 1991;42:1-7.
Juteau P, Bisaillon JG, Lépine F, Ratheau V, Beaudet R, Villemur R. Improving the biotreatment of hydrocarbons-contaminated soils by addition of activated sludge taken from the wastewater treatment facilities of an oil refinery. Biodegradation. 2003;14:31-40.
Bridie A, Bos J. Biological degradation of mineral oil in sea wáter. J Inst Petrol. 1971;57:270-7.
Hunkeler D, Höhener P, Zeyer J. Engineered and subsequent intrinsic in situ bioremediation of a diesel fuel contaminated aquifer. J Contam Hydrol. 2002; 59(3-4):231-45.
Whyte LG, Hawari J, Zhou E, Bourbonnière L, Inniss WE, Greer CW. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol. 1998;64(7):2578-84.
Siron R, Pelletier E, Brochu C. Environmental factors influencing the biodegradation of petroleum hydrocarbons in cold sea water. Arch Environ Contamin Toxicol. 1995;28:406-16.
MacCormack WP, Fraile ER. Characterization of a hydrocarbon degrading psychrophilic Antarctic bacterium. Antarct Sci. 1997;9:150-5.
Margesin R, Schinner F. Biological decontamination of oil spills in cold environments. J Chem Technol Biotechnol. 1999;74:381-9.
Bordenave S, Goni-Urriza MS, Caumette P, Duran R. Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl Environ Microbiol. 2007; 73:6089-97.
Kim JS, Crowley DE. Microbial diversity in natural asphalts of the Rancho La Brea Tar Pits. Appl Environ Microbiol. 2007;73:4579-91.
Semple KT, Reid BJ, Fermor TR. Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut. 2001;112:269-83.
Chen CI, Taylor RT. Batch and fed-batch bioreactor cultivations of a Thermus species with thermophilic BTEX-degrading activity. Appl Microbiol Biotechnol. 1997;47:726-33.
Feitkenhauer H, Müller R, Märkl H. Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60-70 degrees C by Thermus and Bacillus spp. Biodegradation. 2003;14:367-72.
Pollard SJT, Heneday SE, Fedorak PM. Bioremediation of petroleum- and creosote-contaminated soils: a review of constraints. Waste Manage Res. 1994;12: 173-94.
Schultz, H. Using bioremediation to help clean-up the Exxon Valdez oil spill. 1996 Dec 2 (cited 2009 Apr 14). Available from: http://gwyn.tux.org/pub/tux/hschultz/paper.doc .
Häggblom M, Valo R. Biorremediation of chlorophenol wastes. In: Young L, Cerniglia C, editors. Microbial transformation and degradation of toxic organic chemicals. New York: John Wiley & Sons; 1995. p. 389-434.
Davis JB. Petroleum Microbiology. 1st ed. Amsterdam: Elsevier; 1967. p. 34-536.
Sarubbi AJ. Biorremediación. Aspectos de importancia (cited 2004 Nov 23). Available from: http://www.aidisar.org/index.html.
OLIZYM. Productos de biotecnología de última generación para la biorremediación acelerada de los derivados del petróleo. 2004 Sep (cited 2010 Sep 7) Available from: http://ecobiotec.com/Spainintro.html.
Van Hamme JD, Singh A, Ward OP. Recent advances in petroleum microbiology. Microbiol Mol Biol Rev. 2003;67(4):503-49.
Harayama S, Kasai Y, Hara A. Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol. 2004;15(3):205-14.
Mille G, Almallah M, Bianchi M, van Wambeke F, Bertrand JC. Effect of salinity on petroleum biodegradation. Fresenius J Anal Chem. 1991;339:788-91.
Olson JW, Mehta NS, Maier RJ. Requirement of nickel metabolism protein HypA and HypB for full activity of both hydrogenase and urease in Helicobacter pylori. Mol Microbiol. 2001:39:176-82.
Gadd GM. Metals and microorganisms: a problem of definition. FEMS Microbiol Lett. 1992;100:197-204.
Viñas M, Sabaté J, Espuny MJ, Solanas AM. Bacterial community dinamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol. 2005;71:7008-18.
Alexander M. Biodegradation and bioremediation. 2nd ed. New York: Academic Press; 1999.
LaGrega MD, Buckingham PL, Evans JC, Environmental Resources Management group. Hazardous waste management. 2nd ed. Boston: McGraw-Hill; 2001. p. 7-23.
Madigan M, Martinko J, Parker J Brock. Biología de los microorganismos. 10 ed. Madrid: Prentice Hall Iberia (Madrid); 2004. p. 986.
Abalos A, Viñas M, Sabaté J, Manresa MA, Solanas AM. Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation. 2004;15(4):249-60.
Zobell CE. Action of microorganisms on hydrocarbons. Bacteriol Rev. 1946;10:1-49.
Leahy JG, Colwell RR. Microbial degradation of hydrocarbons in the environment. Microbiol Rev. 1990;54(3):305-15.
Watanabe K. Microorganisms relevant to bioremediation. Curr Opin Biotechnol. 2001;12(3):237-41.
Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT. Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol. 1995;45(1):116-23.
Engelhardt MA, Daly K, Swannell RP, Head IM. Isolation and characterization of a novel hydrocarbon-degrading, Gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J Appl Microbiol. 2001;90(2):237-47.
Golyshin PN, Chernikova TN, Abraham WR, Lünsdorf H, Timmis KN, Yakimov MM. Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol. 2002;52(Pt 3):901-11.
Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, et al. Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol. 2003; 53(Pt 3):779-85.
Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lünsdorf H, et al. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol. 1998;48 Pt 2:339-48.
Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol. 1992; 42(4):568-76.
Gilewicz M, Ni’matuzahroh, Nadalig T, Budzinski H, Doumenq P, Michotey V, et al. Isolation and characterization of a marine bacterium capable of utilizing 2-methylphenanthrene. Appl Microbiol Biotechnol. 1997;48(4):528-33.
Maugeri TL, Gugliandolo C, Caccamo D, Stackebrandt E. Three novel halotolerant and thermophilic Geobacillus strains from shallow marine vents. Syst Appl Microbiol. 2002;25(3):450-5.
Zhuang WQ, Tay JH, Maszenan AM, Tay ST. Isolation of naphthalene-degrading bacteria from tropical marine sediments. Water Sci Technol. 2003;47(1):303-8.
Vigueras JG. Estudio de la respuesta fisiológica de hongos filamentosos al crecer con sustratos gaseosos de diferentes grados de hidrofobicidad. Tesis para la obtención del grado de Master en Biotecnología. Universidad Autónoma Metropolitana. México, 2007.
Prenafeta-Boldú FX, Summerbell R, Sybren de Hoog G. Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev. 2006;30(1):109-30.
Cohen Y, Rosenberg E, editors. Microbial mats: Physiological ecology of benthic microbial communities. Washington DC: American Society for Microbiology; 1989.
Cohen Y, Castenholz RW, Halvorson HO, editors. Microbial mats: stromatolites. New York: Alan R Liss Inc.; 1984.
Stal LJ, Caumette P, editors. Microbial mats: structure, development and environmental significance (NATO ASI Series/ Ecological Sciences). Berlin: Springer-Verlag; 1994.
Raghukumar C, Vipparty V, David JJ, Chandramohan D. Degradation of crude oil by marine cyanobacteria. Appl Microbiol Biotechnol. 2001;57(3):433-6.
Abed RM, Safi NM, Köster J, de Beer D, El-Nahhal Y, Rullkötter J, et al. Microbial diversity of near alkylbenzene sulfonate from different cultures with Anabaena sp. HB 1017. Bull Environ Contam Toxicol. 1998;60(2):329-34.
Grötzschel S, Köster J, Abed RM, de Beer D. Degradation of petroleum model compounds immobilized on clay by a hypersaline microbial mat. Biodegradation. 2002;13(4):273-83.
Al-Hasan RH, Al-Bader DA, Sorkhoh NA, Radwan SS. Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Mar Biol. 1998; 130:521-7.
Cerniglia CE, Gibson DT, Van Baalen C. Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochem Biophys Res Commun. 1979;88(1):50-8.
Cerniglia CE, Gibson DT, van Baalen C. Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol. 1980;116:495-500.
Yan GA, Jiang JW, Wu G, Yan X. Disappearance of linear alkylbenzene sulfonate from different cultures with Anabaena sp. HB 1017. Bull Environ Contam Toxicol. 1998;60(2):329-34.
Radwan SS, Al-Hasan RH. Oil pollution and cianobacteria. In: Whitton BA, Potts M, editors. The ecology of cyanobacteria. Dordrecht: Kluwer Academic Publishers; 2000. p 307-19.
Mansy AE, El-Bestawy E. Toxicity and biodegradation of fluometuron by selected cyanobacterial species. World J Microbiol Biotechnol. 2002;18:125-31.
Abed RMM, Köster J. The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds. Int Biodeterior Biodegr. 2005;55:29-37
Martínez J, Fonseca EL, Villaverde MJ, Ramos IF, Fuentes M, Joseph IN, et al., inventors; Instituto de Oceanología, assignee. Bioproducto para combatir la contaminación por hidrocarburos del petróleo y sus derivados. Cuba patent CU 22323 A1. 1995 Jan 31.
Rodríguez F. Demuestra producto cubano efectividad para combatir derrames de petróleo. Periódico Trabajadores, 7 julio 2004. Disponible en http://www.trabajadores.co.cu