2012, Número 1
<< Anterior Siguiente >>
Biotecnol Apl 2012; 29 (1)
Inducción de quitinasas y glucanasas en cepas de Trichoderma spp. promisorias como agentes para el control biológico
González I, Infante D, Martínez B, Arias Y, González N, Miranda I, Peteira B
Idioma: Ingles.
Referencias bibliográficas: 32
Paginas: 12-16
Archivo PDF: 158.86 Kb.
RESUMEN
La secreción de enzimas hidrolíticas es uno de los mecanismos de los hongos del género Trichoderma, para ejercer el control biológico de plagas y enfermedades. Las quitinasas y glucanasas son dos de estas enzimas que degradan la pared celular de los hongos fitopatógenos y la cutícula de insectos y nematodos. Se evaluó la dinámica de inducción de esas enzimas en diez cepas de Trichoderma spp. en tres medios líquidos con inductores diferentes: medio basal, medio basal suplementado con quitina al 0.5% y medio basal suplementado con gelatina al 0.2%. Las actividades quitinasas y glucanasas se evaluaron al primer, tercer, quinto y séptimo día del cultivo. Los mayores valores de la actividad quitinasa se alcanzaron en los medios basal y basal suplementado con quitina, mientras que los medios basal y basal suplementado con gelatina resultaron mejores inductores de las β-1.3-glucanasas.
REFERENCIAS (EN ESTE ARTÍCULO)
Jayalakshmi SK, Raju S, Usha Rani S, Benagi VI, Sreeramulu K. Trichoderma harzianum L. as a potential source for lytic enzymes and elicitor of defense responses in chickpea (Cicer arietinum L.) against wilt disease caused by Fusarium oxysporum f. sp. ciceri. Aust J Crop Sci. 2009;3(1):44-52.
Tondje P, Roberts DP, Bon M, Widner T, Samuels GJ, Ismaiel AA, et al. Isolation and identification of mycoparasitic isolates of Trichoderma asperellum with potential for suppression of black pod disease of cacao in Cameroon. Biol Control. 2007;43:202-12.
Küçük Ç, Kıvanç M. Mycoparasitism in the biological control of Gibberella zeae and Aspergillus ustus by Trichoderma harzianum strains. J Agric Technol. 2008; 4(2):49-55.
Zeilinger S, Omann M. Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. Gene Regul Syst Bio. 2007;1:227-34.
Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR. Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochem Eng J. 2007;37(1):1-20.
Kapulnik Y, Chet I. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite T. harzianum strain T-203. Plant Physiol Biochem. 2000;38:863-73.
Chet I. Trichoderma-application and mode of action, and potential as biocontrol agent of soilborne plant pathogenic fungi. In: Chet I, editor. Innovative approaches to plant disease control. New York: John Wiley; 1987. p. 137-60.
Bartnicki-Garcia S. Fundamental aspects of hyphal morphogenesis. In: Ashworth JM, Smith JE, editors. Microbial differentiation. Cambridge: Cambridge University Press; 1973. p. 245-68.
Sharma P, Pandey R. Biological control of root-knot nematode; Meloidogyne incognita in the medicinal plant; Withania somnífera and the effect of biocontrol agents on plant growth. Afr J Agric Res. 2009;4(6):564-7.
Shakeri J, Foster HA. Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzyme Microb Technol. 2007;40(4):961-8.
Goswami J, Pandey RK, Tewari JP, Goswami BK. Management of root knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. J Environ Sci Health. Part B: Pestic, Food Contam, Agric Wastes. 2008;43(3):237-40.
Bokhari F. Efficacy of some Trichoderma species in the control of Rotylenchulus reniformis and Meloidogyne javanica. Arch Phytopathol Plant Prot. 2009;42(4): 361-9.
Haggag WM, Amin AW. Efficiency of Trichoderma species in control of Fusarium-rot, root knot and reniform nematodes disease complex on sunflower. Pakistan J Biol Sci. 2001;4(3):314-8.
Jin RD, Suh JW, Park RD, Kim YW, Krishnan HB, Kim KY. Effect of chitin compost and broth on biological control of Meloidogyne incognita on tomato (Lycopersicon esculentum Mill.). Nematology. 2005;7:125-32.
Martínez B, Infante D, Reyes Y. About to identification of some Trichoderma isolates reported in Revista de Protección Vegetal. Rev Protección Veg. 2010;25(2):135.
Martínez B, Reyes Y, Infante D, González E, Baños H, Cruz A. Selección de aislamientos de Trichoderma spp. candidatos a biofungicidas para el control de Rhizoctonia sp. en arroz. Rev Protección Veg. 2008;23(2):118-25.
Peteira B, Estévez I, Montes de Oca N, Hidalgo-Díaz L. Estabilidad de la cepa IMI SD 187 de Pochonia chlamydosporia var. catenulata en medio sólido. Rev Protección Veg. 2007;22(2):124-7.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
Boller T, Gehri A, Mauch F, Vögeli U. Chitinase in bean leaves: induction by ethylene, purification, properties and possible function. Planta. 1983;157:22-31.
Zheng Y, Wozniak CA. Adaptation of a beta-1,3-glucanase assay to microplate format. Biotechniques. 1997;22(5):922-6.
Di Rienzo JA, Balzarini M, Gonzalez L, Casanoves F, Tablada M, Robledo C. InfoStat. Software estadístico [Internet]. Versión 2009. Córdoba: Universidad Nacional de Córdoba, Argentina; 2009.
Limon MC, Pintor-Toro JA, Benitez T. Increased antifungal activity of Trichoderma harzianum transformants that overexpress a 33-kDa chitinase. Phytopathology. 1999;89(3):254-61.
Marcello CM, Steindorff AS, da Silva SP, Silva Rdo N, Mendes Bataus LA, Ulhoa CJ. Expression analysis of the exo-beta-1,3-glucanase from the mycoparasitic fungus Trichoderma asperellum. Microbiol Res. 2010;165(1):75-81.
Viterbo A, Montero M, Ramot O, Friesem D, Monte E, Llobell A, et al. Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Curr Genet. 2002;42(2):114-22.
Bara MT, Lima AL, Ulhoa CJ. Purification and characterization of an exo-beta-1,3-glucanase produced by Trichoderma asperellum. FEMS Microbiol Lett. 2003;219(1):81-5.
Howell CR. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 2003;87(1):4-10.
Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species--opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2004;2(1):43-56.
Muiño BL, Botta E, Pérez E, Moreno D, Fernández E. Uso de Trichoderma como alternativa al bromuro de metilo en los cultivos protegidos, flores y ornamentales en Cuba. Fitosanidad. 2006;10(2):179-80.
Radjacommare R, Venkatesan S, Samiyappan R. Biological control of phytopathogenic fungi of vanilla through lytic action of Trichoderma species and Pseudomonas fluorescens. Arch Phytopathol Plant Prot. 2010;43(1):1-17.
Fang W, Feng J, Fan Y, Zhang Y, Bidochka MJ, Leger RJ, et al. Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J Invertebr Pathol. 2009;102(2):155-9.
Dennis C, Webster J. Antagonistic properties of species groups of Trichoderma. II. Production of Volatile antibiotics. Trans Br Mycol Soc. 1971;57:41-8.
Elad Y, Chet I, Henis Y. Degradation of plant pathogenic fungi by Trichoderma harzianum. Can J Microbiol. 1982;28(7):719-25.