2012, Número 2
<< Anterior Siguiente >>
Rev Educ Bioquimica 2012; 31 (2)
Control hormonal de la homeostásiscenergética: de la célula al cerebro
Osorio PI, Salceda SR
Idioma: Español
Referencias bibliográficas: 27
Paginas: 41-48
Archivo PDF: 289.84 Kb.
RESUMEN
El contenido de glucosa, tanto en las células como en el organismo completo, depende de su ingreso, síntesis y consumo. Este flujo se encuentra regulado por señales que son generadas en respuesta a los cambios del estado energético. A nivel orgánico, la sensación de hambre y saciedad, modulada por el hipotálamo, desemboca en la producción de neuropéptidos que estimulan a órganos como el páncreas, intestino y tejido adiposo, que responden y promueven la producción de hormonas, como la insulina y el glucagon, cuyos receptores generan a nivel celular el aumento o disminución del metabolismo de la glucosa. Esta regulación a nivel celular incluye la activación de factores de transcripción de diferentes enzimas, así como su fosoforilación, lo que lleva a un control de su actividad. La fina regulación energética del organismo es un ejemplo claro de la compleja función de la homeostasis celular.
REFERENCIAS (EN ESTE ARTÍCULO)
Aufderheide AC, W Salo M, Madden J, Streitz, Mueckeler M (1994) Facilitative glucose transporters. Eur J Biochem 219:713-725.
Atkinson DE (1968) Energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034.
Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferré P, Birnbaum MJ, Stuck BJ, Kahn BB (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569-574.
Steinberg GR, Kemp BE (2009) AMPK in Health and Disease. Physiol Rev 89:1025-1078.
Lorek A, Wilson KS, Sansom MS, Stuart DI, Stura EA, Jenkins JA, Zanotti G, Hajdu J, Johnson LN (1984) Allosteric interactions of glycogen phosphorylase b. A crystallographic study of glucose 6-phosphate and inorganic phosphate binding to di-imidate-cross-linked phosphorylase b. Biochem J 218:45-60.
Hanashiro I, Roach PJ (2002) Mutations of muscle glycogen synthase that disable activation by glucose 6-phosphate. Arch Biochem Biophys 397:286-292.
Yamashita H, Takenoshita M, Sakurai M, Bruick RK, Henzel WJ, Shillinglaw W, Arnot D, Uyeda K (2001) A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A 98:9116-9121.
Treesukosol Y, Smith KR, Spector AC (2011) Behavioral evidence for a glucose polymer taste receptor that is independent of the T1R2+3 heterodimer in a mouse model. J Neurosci 31:13527-13534.
Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJ, Dean DC, Melillo DG, Patchett AA, Nargund R, Griffin PR, DeMartino JA, Gupta SK, Schaeffer JM, Smith RG, Van der Ploeg LH (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273:974-977.
Zilliacus J, Dahlman-Wright K, Wright A, Gustafsson JA, Carlstedt-Duke J (1991) DNA binding specificity of mutant glucocorticoid receptor DNA-binding domains. J Biol Chem 266:3101-3106.
Saltiel, RA, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799-806.
Breen DM, Yang CS, Lam TK (2011) Gut-brain signalling: how lipids can trigger the gut. Diabetes Metab Res Rev 27:113-119.
Routh VH (2010) Glucose Sensing Neurons in the Ventromedial Hypothalamus. Sensors (Basel) 10:9002-9025.
Yabe D, Seino Y (2011) Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and β cell preservation. Prog Biophys Mol Biol 107:248-256.
Drucker DJ (2007) The role of gut hormones in glucose homeostasis. J Clin Invest 117:24-32.
Lutz TA (2010) The role of amylin in the control of energy homeostasis. Am J Physiol Regul Integr Comp Physiol 298:1475-1484.
Mollet A, Gilg S, Riediger T, Lutz TA (2004) Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol Behav 81:149-155.
Pieber TR, Roitelman J, Lee Y, Luskey KL, Stein DT (1994) Direct plasma radioimmunoassay for rat amylin-(1-37): concentrations with acquired and genetic obesity. Am J Physiol 267:156-164.
Bi S, Moran TH (2003) Response to acute food deprivation in OLETF rats lacking CCK-A receptors. Physiol Behav 79:655-661.
Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Wool EA, Monroe CA, Tepper RI (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263-1271.
Roa J, Tena-Sempere M (2010) Energy balance and puberty onset: emerging role of central mTOR signaling. Trends Endocrinol Metab 21:519-28.
Wang R, Liu X, Hentges ST, Dunn-Meynell AA, Levin BE, Wang W, Routh VH (2004) The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes 53:1959-1965.
Murphy KG, Bloom SR (2006) Gut hormones and the regulation of energy homeostasis. Nature 444:854-859.
Arluison M, Quignon M, Thorens B, Leloup C, Penicaud L (2004) Immunocytochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II. Electron microscopic study. J Chem Neuroanat 28:137-146.
Harvey J, McKenna F, Herson PS, Spanswick D, Ashford ML (1997) Leptin activates ATP-sensitive potassium channels in the rat insulin-secreting cell line, CRI-G1. J Physiol 504:527-535.
Laguna J, Piña-Garza E (2002) Bioquímica de Laguna. El manual moderno, México, p 649.
Seino S, Shibasaki T, Minami K (2011) Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J Clin Invest 121:2118-2125.