2012, Número 1
<< Anterior Siguiente >>
Investigación en Discapacidad 2012; 1 (1)
El desarrollo del esqueleto y la osteoartritis
Garciadiego CD
Idioma: Español
Referencias bibliográficas: 91
Paginas: 7-17
Archivo PDF: 189.74 Kb.
RESUMEN
El cartílago articular, a diferencia del cartílago de la placa de crecimiento, es un tejido especializado para no calcificarse. Sin embargo, la mineralización del cartílago articular es un proceso común en las complicaciones de la osteoartritis (OA) y el envejecimiento. Algunos trabajos han demostrado cierta similitud de los mecanismos del desarrollo de la placa de crecimiento y la degeneración del cartílago articular. Éstos incluyen la proliferación de los condrocitos, la hipertrofia, mineralización de la matriz extracelular (MEC) y la apoptosis. El desarrollo de la placa de crecimiento está regulado por la señalización de algunos factores de crecimiento y por las interacciones de los condrocitos con las moléculas de la matriz extracelular. La proteína relacionada a la hormona paratiroidea (PthrP) e Indian Hedgehog (Ihh) son los mediadores centrales del desarrollo del hueso endocondral; la PthrP es abundante en el líquido sinovial de los pacientes con OA, pero la expresión de Ihh disminuye en el cartílago con OA. Además, PthrP se conoce por inducir la proliferación de los condrocitos, mientras que el factor de crecimiento de fibroblastos 18 (Fgf-18) la regula negativamente y su aplicación intrasinovial en las ratas con OA resulta en la generación de cartílago. La señalización Wnt también juega un papel importante en la diferenciación del condrocito de la placa de crecimiento. Wnt-5a promueve la prehipertrofia del condrocito, pero al mismo tiempo inhibe la hipertrofia del cartílago; por el contrario, Wnt-4 induce la hipertrofia del condrocito y desde las etapas tempranas de la OA incrementa su expresión en el cartílago articular. Por otro lado, el desbalance del recambio de la matriz del cartílago durante la OA resulta en un mayor depósito de colágena tipo I y X, características del cartílago hipertrófico, mientras que disminuye la expresión de la colágena tipo II y IX. Es decir, aunque el condrocito es la unidad celular del cartílago articular y el de la placa de crecimiento que comparten varías características, presentan una diferencia importante; la tasa de la hipertrofia del condrocito es mayor en el cartílago articular con OA que en el cartílago articular sano y recapitula la señalización del cartílago de la placa de crecimiento. Pero, ¿cuál es la señal que hace la diferencia? Nosotros pensamos que la respuesta está en el origen embrionario de estos dos tipos de cartílago, justo en la formación de las articulaciones durante la esqueletogénesis.
REFERENCIAS (EN ESTE ARTÍCULO)
Gardner DL. The nature and causes of osteoarthrosis. Br Med J 1983; 286: 418-424.
Hedbom E, Häuselmann HJ. Molecular aspects of pathogenesis in osteoarthritis: the role of inflammation. Cell Mol Life Sci 2002; 59: 45-53.
Vincent TL, Saklatvala J. Is the response of cartilage to injury relevant to osteoarthritis? Arthritis Rheum 2008; 58: 1207-1210.
Bos SD, Slagboom PE, Meulenbelt I. New insights into osteoarthritis: early developmental features of an ageing-related disease. Curr Opin Rheumatol 2008; 20: 553-559.
Ala-Kokko L, Baldwin CT, Moskowitz RW, Prockop DJ. Single base mutation in the type II procollagen gene (COL2A1) as a cause of primary osteoarthritis associated with a mild chondrodysplasia. PNAS USA 1990; 87: 6565-6568.
Vikkula M, Olsen BR. Unravelling the molecular genetics of osteoarthrosis. Ann Med 1996; 28: 301-304.
Eerola I, Salminen H, Lammi P, Lammi M, Von Der Mark K, Vuorio E, Säämänen AM. Type X collagen, a natural component of mouse articular cartilage. Association with growth, aging, and osteoarthritis. Arthritis Rheum 1998; 41: 1287-1295.
Aigner T, Zhu Y, Chansky HH, Matsen FA, Maloney WJ, Sandell LJ. Reexpression of type IIA procollagen by adult articular chondrocytes in osteoarthritic cartilage. Arthritis Rheum 1999; 42: 1443-1450.
Pfander D, Cramer T, Deuerling D, Weseloh G, Swoboda B. Expression of thrombospondin-1 and its receptor CD36 in human osteoarthritic cartilage. Ann Rheum Dis 2000; 59: 448-454.
Garnero P, Ayral X, Rousseau JC, Christgau S, Sandell LJ, Dougados M et al. Uncoupling of type II collagen synthesis and degradation predicts progression of joint damage in patients with knee osteoarthritis. Arthritis Rheum 2002; 46: 2613-2624.
Pendleton A, Johnson MD, Hughes A, Gurley KA, Ho AM, Doherty M et al. Mutations in ANKH cause chondrocalcinosis. Am J Hum Genet 2002; 71: 933-940.
Xu L, Peng H, Glasson S, Lee PL, Hu K, Ijiri K et al. Increased expression of the collagen receptor discoidin domain receptor 2 in articular cartilage as a key event in the pathogenesis of osteoarthritis. Arthritis Rheum 2007; 56: 2663-2673.
Klatt AR, Becker A-KA, Neacsu CD, Paulsson M, Wagener R. The matrilins: Modulators of extracellular matrix assembly. Int J Biochem Cell Biol 2011; 43: 320-330.
Otten C, Hansen U, Talke A, Wagener R, Paulsson M, Zaucke F. A matrilin-3 mutation associated with osteoarthritis does not affect collagen affinity but promotes the formation of wider cartilage collagen fibrils. Hum Mutat 2010; 31: 254-263.
Klatt AR, Klinger G, Paul-Klausch B, Kühn G, Renno JH, Wagener R et al. Matrilin-3 activates the expression of osteoarthritis-associated genes in primary human chondrocytes. FEBS lett 2009; 583: 3611-3617.
van der Weyden L, Wei L, Luo J, Yang X, Birk DE, Adams DJ et al. Functional knockout of the matrilin-3 gene causes premature chondrocyte maturation to hypertrophy and increases bone mineral density and osteoarthritis. Am J Path 2006; 169: 515-527.
Majumdar MK, Askew R, Schelling S, Stedman N, Blanchet T, Hopkins B et al. Double-knockout of ADAMTS-4 and ADAMTS-5 in mice results in physiologically normal animals and prevents the progression of osteoarthritis. Arthritis Rheum 2007; 56: 3670-3674.
Huang K, Wu LD. Aggrecanase and aggrecan degradation in osteoarthritis: a review. J Int Med Res 2008; 36: 1149-1160.
Malfait A-M, Arner EC, Song R-H, Alston JT, Markosyan S, Staten N et al. Proprotein convertase activation of aggrecanases in cartilage in situ. Arch Biochem Biophys 2008; 478: 43-51.
Echtermeyer F, Bertrand J, Dreier R, Meinecke I, Neugebauer K, Fuerst M et al. Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nature Medicine 2009; 15: 1072-1076.
Miwa HE, Gerken TA, Huynh TD, Duesler LR, Cotter M, Hering TM. Conserved sequence in the aggrecan interglobular domain modulates cleavage by ADAMTS-4 and ADAMTS-5. Biochim Biophys Acta 2009; 1790: 161-172.
Xu L, Peng H, Glasson SS, Lee PL, Hu K, Ijiri K et al. Increased expression of the collagen receptor discoidin domain receptor 2 in articular cartilage as a key event in the pathogenesis of osteoarthritis. Arthritis Rheum 2007; 56: 2663-2673.
Reginato AM, Olsen BR. The role of structural genes in the pathogenesis of osteoarthritic disorders. Arthritis Res 2002; 4: 337-345.
van der Kraan PM, Blaney Davidson EN, Blom A, van den Berg WB. TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor-Smads. Osteoarthr Cartil 2009; 17: 1539-1545.
Wang M, Shen J, Jin H, Im H-J, Sandy J, Chen D. Recent progress in understanding molecular mechanisms of cartilage degeneration during osteoarthritis. Ann N Y Acad Sci 2011; 1240: 61-69.
Scharstuhl A, Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB. Inhibition of endogenous TGF-beta during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J Immunol 2002; 169: 507-514.
Archer CW. Skeletal development and osteoarthritis. Ann Rheum Dis 1994; 53: 624-630.
DeLise AM, Fischer L, Tuan RS. Cellular interactions and signaling in cartilage development. Osteoarthr Cartil 2000; 8: 309-334.
Honsawek S, Tanavalee A, Yuktanandana P, Ngarmukos S, Saetan N, Tantavisut S. Dickkopf-1 (Dkk-1) in plasma and synovial fluid is inversely correlated with radiographic severity of knee osteoarthritis patients. BMC Musculoskelet Dis 2010; 11: 257.
Luyten FP, Tylzanowski P, Lories RJ. Wnt signaling and osteoarthritis. Bone 2009; 44: 522-527.
Aigner T, Gerwin N. Growth plate cartilage as developmental model in osteoarthritis research-potentials and limitations. Curr Drug Targ 2007; 8: 377-385.
Sandell LJ, Adler P. Developmental patterns of cartilage. Front Biosci 1999; 4: 731-742.
Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 1996; 273: 663-666.
Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP et al. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 2001; 128: 4523-4534.
St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999; 13: 2072-2086.
Mak KK, Kronenberg HM, Chuang P-T, Mackem S, Yang Y. Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development 2008; 135: 1947-1956.
Naski MC, Colvin JS, Coffin JD, Ornitz DM. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 1998; 125: 4977-4988.
Decker E, Durand C, Bender S, Rödelsperger C, Glaser A, Hecht J et al. FGFR3 is a target of the homeobox transcription factor SHOX in limb development. Hum Mol Genet 2011; 20: 1524-1535.
Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T, Itoh N et al. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 2002; 16: 870-879.
Wang Y, Spatz MK, Kannan K, Hayk H, Avivi A, Gorivodsky M et al. A mouse model for achondroplasia produced by targeting fibroblast growth factor receptor 3. PNAS USA 1999; 96: 4455-4460.
Wang Q, Green RP, Zhao G, Ornitz DM. Differential regulation of endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine kinase domains. Development 2001; 128: 3867-3876.
Duprez D, Bell EJ, Richardson MK, Archer CW, Wolpert L, Brickell PM et al. Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Mech Dev 1996; 57: 145-157.
Haaijman A, Karperien M, Lanske B, Hendriks J, Löwik CW, Bronckers AL et al. Inhibition of terminal chondrocyte differentiation by bone morphogenetic protein 7 (OP-1) in vitro depends on the periarticular region but is independent of parathyroid hormone-related peptide. Bone 1999; 25: 397-404.
Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP et al. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 2001; 128: 4523-4534.
Mukherjee A, Rotwein P. Akt promotes BMP2-mediated osteoblast differentiation and bone development. J Cell Sci 2009; 122: 716-726.
Sears KE, Behringer RR, Rasweiler JJ, Niswander LA. Development of bat flight: morphologic and molecular evolution of bat wing digits. PNAS USA 2006; 103: 6581-6586.
Koyama E, Yasuda T, Minugh-Purvis N, Kinumatsu T, Yallowitz AR, Wellik DM et al. Hox11 genes establish synovial joint organization and phylogenetic characteristics in developing mouse zeugopod skeletal elements. Development 2010; 137: 3795-3800.
Salsi V, Vigano MA, Cocchiarella F, Mantovani R, Zappavigna V. Hoxd13 binds in vivo and regulates the expression of genes acting in key pathways for early limb and skeletal patterning. Dev Biol 2008; 317: 497-507.
Hérault Y, Beckers J, Gérard M, Duboule D. Hox gene expression in limbs: colinearity by opposite regulatory controls Dev Biol 1999; 208: 157-165.
Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P. Mechanobiology of embryonic skeletal development: Insights from animal models. Birth Defect Res C 2010; 90: 203-213.
Montero JA, Hurle JM. Deconstructing digit chondrogenesis. Bioessays 2007; 29: 725-737.
Ehlen HWA, Buelens LA, Vortkamp A. Hedgehog signaling in skeletal development. Birth Defect Res C 2006; 78: 267-279.
Hartmann C, Tabin CJ. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 2001; 104: 341-351.
Thomas JT, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten FP. A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nature Genetics 1996; 12: 315-317.
Francis-West PH, Parish J, Lee K, Archer CW. BMP/GDF-signalling interactions during synovial joint development. Cell Tiss Res 1999; 296: 111-119.
Bächner D, Ahrens M, Betat N, Schröder D, Gross G. Developmental expression analysis of murine autotaxin (ATX). Mech Dev 1999; 84: 121-125.
Nalin AM, Greenlee TK, Sandell LJ. Collagen gene expression during development of avian synovial joints: transient expression of types II and XI collagen genes in the joint capsule. Dev Dyn 1995; 203: 352-362.
Dowthwaite GP, Edwards JC, Pitsillides AA. An essential role for the interaction between hyaluronan and hyaluronan binding proteins during joint development. J Histochem Cytochem 1998; 46: 641-651.
Archer CW, Dowthwaite GP, Francis-West PH. Development of synovial joints. Birth Defect Res C 2003; 69: 144-155.
Ben-Ari E. Of Joints and Genes. HHMI Bulletin 2003: 2-13.
Komori T. Runx2, a multifunctional transcription factor in skeletal development. J Cell Biochem 2002; 87:1-8.
Stricker S, Fundele R, Vortkamp A, Mundlos S. Role of Runx genes in chondrocyte differentiation. Dev Biol 2002; 245: 95-108.
Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue KI et al. Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev 2004; 18: 952-963.
Kwan KM, Pang MK, Zhou S, Cowan SK, Kong RY, Pfordte T et al. Abnormal compartmentalization of cartilage matrix components in mice lacking collagen X: implications for function. J Cell Biol 1997; 136: 459-471.
Perumal S, Antipova O, Orgel JPRO. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. PNAS USA 2008; 105: 2824-2829.
Lefebvre V, Smits P. Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C 2005; 75: 200-212.
Milz S, Boszczyk A, Putz R. Development and functional structure of the epiphyseal plate. Der Orthopäde 2002; 31:835-840.
Reddi AH. Cartilage morphogenetic proteins: role in joint development, homoeostasis, and regeneration. Ann Rheum Dis 2003; 62 (2): 73-78.
Guo X, Mak KK, Taketo MM, Yang Y. The Wnt/beta-catenin pathway interacts differentially with PTHrP signaling to control chondrocyte hypertrophy and final maturation. PLoS ONE 2009; 4: e6067.
Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR et al. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 2000; 151: 879-889.
Shum L, Nuckolls G. The life cycle of chondrocytes in the developing skeleton. Arthr Res 2002; 4: 94-106.
Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003; 423: 337-342.
Funaba M, Ogawa K, Abe M. Expression and localization of activin receptors during endochondral bone development. Eur J Endocrinol 2001; 144: 63-71.
McGlashan SR, Haycraft CJ, Jensen CG, Yoder BK, Poole CA. Articular cartilage and growth plate defects are associated with chondrocyte cytoskeletal abnormalities in Tg737orpk mice lacking the primary cilia protein polaris. Matrix Biol 2007; 26: 234-246.
Burdan F, Szumiło J, Korobowicz A, Farooquee R, Patel S, Patel A et al. Morphology and physiology of the epiphyseal growth plate. Folia Histochem Cytobiol 2009; 47: 5-16.
Kobayashi T, Chung UI, Schipani E, Starbuck M, Karsenty G, Katagiri T et al. PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development 2002; 129: 2977-2986.
Swann DA, Silver FH, Slayter HS, Stafford W, Shore E. The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial fluids. Biochem J 1985; 225: 195-201.
Jay GD, Torres JR, Warman ML, Laderer MC, Breuer KS. The role of lubricin in the mechanical behavior of synovial fluid. PNAS USA 2007; 104: 6194-6199.
Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 2008; 316:62-73.
Watanabe H, Yamada Y. Chondrodysplasia of gene knockout mice for aggrecan and link protein. Glycoconj J 2002; 19: 269-273.
Knudson W, Loeser RF. CD44 and integrin matrix receptors participate in cartilage homeostasis. Cell Mol Life Sci 2002; 59: 36-44.
Surmann-Schmitt C, Dietz U, Kireva T, Adam N, Park J, Tagariello A et al. UCMA, a novel secreted cartilage-specific protein with implications in osteogenesis. J Biol Chem 2008; 283: 7082-7093.
Eames BF, Schneider RA. The genesis of cartilage size and shape during development and evolution. Development 2008; 135: 3947-3958.
Brunet LJ, McMahon JA, McMahon AP, Harland RM. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 1998; 280: 1455-1457.
Garciadiego-Cázares D, Rosales C, Katoh M, Chimal-Monroy J. Coordination of chondrocyte differentiation and joint formation by alpha5beta1 integrin in the developing appendicular skeleton. Development 2004; 131: 4735-4742.
Seemann P, Schwappacher R, Kjaer KW, Krakow D, Lehmann K, Dawson K et al. Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2. J Clin Invest 2005; 115: 2373-2381.
van der Kraan PM, van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration? Osteoarthr Cartil 2012; 20: 223-232.
Alliston T, Choy L, Ducy P, Karsenty G, Derynck R. TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 2001; 20: 2254-2272.
Mateescu RG, Todhunter RJ, Lust G, Burton-Wurster N. Increased MIG-6 mRNA transcripts in osteoarthritic cartilage. Bioch Biophys Res Com 2005; 332: 482-486.
Zhang Y-W, Su Y, Lanning N, Swiatek PJ, Bronson RT, Sigler R et al. Targeted disruption of Mig-6 in the mouse genome leads to early onset degenerative joint disease. PNAS USA 2005; 102: 11740-11745.