2012, Número S1
<< Anterior Siguiente >>
Rev Mex Anest 2012; 35 (S1)
Monitorización de las variables hemometabólicas en el paciente neuroquirúrgico
Jaramillo-Magaña JJ
Idioma: Español
Referencias bibliográficas: 21
Paginas: 33-36
Archivo PDF: 85.25 Kb.
FRAGMENTO
Tradicionalmente, el primer parámetro que se ha utilizado en la clínica para evaluar el deterioro cerebral es la presión intracraneal (PIC). La elevación de la PIC secundaria a un incremento en el volumen intracraneal induce a un nuevo y progresivo daño cerebral secundario, el cual a su vez puede inducir y mantener un círculo vicioso. Existe la creencia sobresimplificada de que un incremento en la PIC por arriba de 20 mmHg es patológico y de que la PIC normal (‹ 15 mmHg) garantiza la ausencia de un proceso patológico. Las nuevas técnicas de neuromonitoreo han demostrado que esto es incorrecto. Los nuevos datos provenientes del neuromonitoreo muestran que las alteraciones metabólicas y funcionales preceden cualquier incremento en la PIC después de trauma craneal. Es importante recalcar que este umbral de 20 mmHg se estableció antes de que el neuromonitoreo extendido (SvjO
2, PtiO
2, microdiálisis, Doppler transcraneal: DTC) se integrara a la rutina en la neuromonitorización.
REFERENCIAS (EN ESTE ARTÍCULO)
Smith M. Monitoring intracranial pressure in traumatic brain injury. Anesth Analg 2008;106:240-8.
Belli A, Sen J, Petzold A, Russo S, Kitchen N, Smith M. Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir (Wien) 2008;150:461-9.
Holbein M, Béchir M, Ludwig S, Sommerfeld J, Cottini SR, Keel M, et al. Differential influence of arterial blood glucose on cerebral metabolism following severe traumatic brain injury. Crit Care 2009;13:R13.
Kiening KL, Unterberg AW, Bardt TF, Schneider GH, Lanksch WR. Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue PO2 versus jugular vein oxygen saturation. J Neurosurg 1996;85:751-7.
Vigué B, Ract C, Benayed M, Zlotine N, Leblanc PE, et al. Early SjvO2 monitoring in patients with severe brain trauma. Intensive Care Med 1999;25:445-51.
Chan MT, Ng SC, Lam JM, Poon WS, Gin T. Redefining the ischemic threshold for jugular venous oxygen saturation– a microdialysis study in patients with severe head injury. Acta Neurochir Suppl 2005;95:63-6.
Gopinath SP, Robertson CS, Contant CF, Hayes C, Feldman Z, Narayan RK, et al. Jugular venous desaturation and outcome after head injury. J Neurol Neurosurg Psychiatry 1994;57:717-23.
Poca MA, Sahuquillo J, Vilalta A, Garnacho A. Lack of utility of arteriojugular venous differences of lactate as a reliable indicator of increased brain anaerobic metabolism in traumatic brain injury. J Neurosurg 2007;106:530-7.
Pérez A, Minces PG, Schnitzler EJ, Agosta GE, Medina SA, Ciraolo CA. Jugular venous oxygen saturation or arteriovenous difference of lactate content and outcome in children with severe traumatic brain injury. Pediatr Crit Care Med 2003;4:33-8.
Glenn TC, Kelly DF, Boscardin WJ, McArthur DL, Vespa P, Oertel M, et al. Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab 2003;23:1239-50.
Rosenthal G, Hemphill JC 3rd, Sorani M, Martin C, Morabito D, Obrist WD, et al. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med 2008;36:1917-24.
Jaeger M, Soehle M, Schuhmann MU, Winkler D, Meixensberger J. Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir (Wien) 2005;147:51-6.
Sarrafzadeh AS, Sakowitz OW, Callsen TA, Lanksch WR, Unterberg AW. Bedside microdialysis for early detection of cerebral hypoxia in traumatic brain injury. Neurosurg Focus 2000;9:e2.
Meixensberger J, Kunze E, Barcsay E, Vaeth A, Roosen K. Clinical cerebral microdialysis: brain metabolism and brain tissue oxygenation after acute brain injury. Neurol Res 2001;23:801-6.
Meixensberger J, Renner C, Simanowski R, Schmidtke A, Dings J, Roosen K. Influence of cerebral oxygenation following severe head injury on neuropsychological testing. Neurol Res 2004;26:414-7.
Maloney-Wilensky E, Gracias V, Itkin A, Hoffman K, Bloom S, Yang W, et al. Brain tissue oxygen and outcome after severe traumatic brain injury: a systematic review. Crit Care Med 2009;37:2057-63.
Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med 2006;34:1783-8.
Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 2005;25:763-74.
Spiotta AM, Stiefel MF, Gracias VH, Garuffe AM, Kofke WA, Maloney-Wilensky E, et al. Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury. J Neurosurg 2010;113:571-80.
Ståhl N, Schalén W, Ungerstedt U, Nordström CH. Bedside biochemical monitoring of the penumbra zone surrounding an evacuated acute subdural haematoma. Acta Neurol Scand 2003;108:211-5.
Czosnyka M, Smielewski P, Timofeev I, Lavinio A, Guazzo E, Hutchinson P, et al. Intracranial pressure: more than a number. Neurosurg Focus 2007;22:E10.